We present Spitzer observations of the dwarf starburst galaxy NGC 1705
obtained as part of SINGS. The galaxy morphology is very different shortward
and longward of ~5 microns: short-wavelength imaging shows an underlying red
stellar population, with the central super star cluster (SSC) dominating the
luminosity; longer-wavelength data reveals warm dust emission arising from two
off-nuclear regions offset by ~250 pc from the SSC. These regions show little
extinction at optical wavelengths. The galaxy has a relatively low global dust
mass (~2E5 solar masses, implying a global dust-to-gas mass ratio ~2--4 times
lower than the Milky Way average). The off-nuclear dust emission appears to be
powered by photons from the same stellar population responsible for the
excitation of the observed H Alpha emission; these photons are unassociated
with the SSC (though a contribution from embedded sources to the IR luminosity
of the off-nuclear regions cannot be ruled out). Low-resolution IRS
spectroscopy shows moderate-strength PAH emission in the 11.3 micron band in
the eastern peak; no PAH emission is detected in the SSC or the western dust
emission complex. There is significant diffuse 8 micron emission after scaling
and subtracting shorter wavelength data; the spatially variable PAH emission
strengths revealed by the IRS data suggest caution in the interpretation of
diffuse 8 micron emission as arising from PAH carriers alone. The metallicity
of NGC 1705 falls at the transition level of 35% solar found by Engelbracht and
collaborators; the fact that a system at this metallicity shows spatially
variable PAH emission demonstrates the complexity of interpreting diffuse 8
micron emission. A radio continuum non-detection, NGC 1705 deviates
significantly from the canonical far-IR vs. radio correlation. (Abridged)Comment: ApJ, in press; please retrieve full-resolution version from
http://www.astro.wesleyan.edu/~cannon/pubs.htm