74 research outputs found

    A Study of Children with Intermediate Anorectal Malformation who have undergone Sacroperineal pull-through with regard to Bowel Function, Quality of Life and Parental Stress.

    Get PDF
    Anorectal malformations comprise a wide spectrum of diseases that affect boys and girls and can involve malformations of the distal anus and rectum, as well as the urinary and genital tracts. Malformations range from minor, easily treated defects that carry an excellent functional prognosis, to complex defects that are difficult to treat, are often associated with other anomalies, and carry a poor functional prognosis. 166 children who had sacroperineal pull-through done for intermediate anorectal malformation from 1996 to 2005 were called for the study. The follow up period ranged 14 to 144 months with a mean follow up period of 6.5 years. The aim of the study was to study the relationship of the pulled through bowel with the anorectal sphincter complex in children who have undergone sacroperineal pull through operation for anorectal malformations (ARM), in order to determine whether the pulled through bowel is correctly sited within the sphincter complex and correlate this with the bowel function. The functional outcome after surgery especially in regard to Quality of Life (QOL), the psychosocial effects on the children due to the anomaly and the treatment were evaluated. The parental stress in bringing up a child with anorectal anomaly was also evaluated. Ages ranged from 2.5 years to 13 years with a mean age of 7.5 years. The parents were young especially the mother with an average age of 23 years. 57% of the family belonged to a low socioeconomic group. 42.8% of the children were first born. 78% and 89% of the children were 2 below 50th percentile for their height and weight respectively. 28% had anal stenosis and 21% had major anal mucosal prolapse. 31% underwent secondary anal procedures. Voluntary bowel movement was seen in 83%, constipation, as detected by the abdominal x-ray, was seen in 100% and soiling in 88%. Anal manometery was done in 18 children. The average anal resting pressure and voluntary squeeze pressures were 52.5 and 144.2 cm of H2O. Magnetic resonance imaging was done in 13 children. The pulled through bowel was central in 77% and the anorectal angle was clear in 92% of the children. 74% of the parents were emotionally affected by the birth of a baby with anorectal malformation. 52% families had difficulty in socializing and 48% children had difficulty in making friends. There was a statistically significant co-relation between soiling and satisfaction with the final result. The quality of life (QOL) scores were on average 7.8 in children with poor continence and children with good continence had a score of 10.5. There was statistically significant improvement in the (QOL) after bowel management program. CONCLUSION : The main post operative complication was constipation leading to fecal impaction and soiling. Management of constipation by bowel management program improves the QOL. Sacroperineal pull-through ensures proper placement of the bowel within the sphincter complex

    Analysis of upper tropospheric humidity measurements by microwave sounders and radiosondes

    Get PDF
    This thesis describes results of several analyses of humidity measurements by microwave humidity sounders and radiosondes. The goal of this work is to pave the way for fully utilizing these measurements for climatological applications. High resolution radiosonde data are used to examine the variability of the clear-sky outgoing longwave radiation (OLR). The global variability of OLR is found to be 33 Wm-2, of which a large part can be attributed to temperature variations. The variability after filtering the temperature part is associated with the humidity variability in the horizontal and the vertical. The impact of the vertical structures on the OLR calculations is also investigated in detail. It is observed that smoothed profiles in relative humidity are sufficient to obtain the mean value of OLR, even though the variability cannot be exactly reproduced. AMSU-B Channel 18 brightness temperatures are sensitive to upper tropospheric humidity (UTH). A simple method is developed to transform the brightness temperatures to UTH. This method is validated with high quality radiosonde data. An initial attempt to make a UTH climatology and the usefulness of a robust estimator such as the median in climatological studies are discussed. Finally, a robust method was developed to compare the humidity measurements from satellite humidity sounders and radiosondes. The method is developed and tested using the high quality radiosonde data from the Lindenberg radiosonde station. A case study using different versions of the data shows that the method is sensitive to humidity differences in the different versions. The main result from the case study is that the corrected radiosonde data still have a slight dry bias in the upper troposphere. The method is then applied to assess the performance of different radiosonde sensors and stations. It isfound to be useful for monitoring the global radiosonde network, using the microwave satellite data as a benchmark

    Upper tropospheric humidity from SAPHIR on-board Megha-Tropiques

    Get PDF
    Upper tropospheric humidity (UTH) has been derived using a ‘brightness temperature (Tb) transformation’ method from the humidity sounder channels of SAPHIR payload on - board Megha - Tropiques (MT). These channels are very close to the water vapour absorption peak at 183.31 GHz. The channel at 183.31 0.2 GHz enables retrieval of humidity up to the hig h est altitude possible wit h the present nadir - looking microwave humidity sounders. Megha - Tropiques satllite has an equatorially inclined orbit, which e n sures frequent spatial and temporal coverage of the global tropical belt. Transformation coeff i cients for the first three channels for all the incidence angles have been derived and are used to convert brightness temperatures to weighted average upper tropospheric humidity having weighting function peaks at different pressure levels. The methodology has been validated by comparing the SAPHIR - derived UTH with that derived from radiosonde observations. Inter - comparison of the derived UTH has been done with layer averaged humidity product from SAPHIR measurements and with UTH product using infrared measurements from Kalpana satellite ( MOSDAC). UTH over the tropical belt for six months has been studied taking the advantage of the humidity product with high spatial and temporal resolution. The transformation coefficients and methodology to identify the cloud - free pixels to derive UTH from the three channels for all the possible incidence angles are presented here, so that the users can directly derive UTH from the brightness temperature data

    Observing CMB polarisation through ice

    Get PDF
    Ice crystal clouds in the upper troposphere can generate polarisation signals at the uK level. This signal can seriously affect very sensitive ground based searches for E- and B-mode of Cosmic Microwave Background polarisation. In this paper we estimate this effect within the ClOVER experiment observing bands (97, 150 and 220 GHz) for the selected observing site (Llano de Chajnantor, Atacama desert, Chile). The results show that the polarisation signal from the clouds can be of the order of or even bigger than the CMB expected polarisation. Climatological data suggest that this signal is fairly constant over the whole year in Antarctica. On the other hand the stronger seasonal variability in Atacama allows for a 50% of clean observations during the dry season.Comment: 7 Pages, 4 figure

    Observational evidence for aerosols increasing upper tropospheric humidity

    Get PDF
    Aerosol-cloud interactions are the largest source of uncertainty in the radiative forcing of the global climate. A phenomenon not included in the estimates of the total net forcing is the potential increase in upper tropospheric humidity (UTH) by anthropogenic aerosols via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 +/- 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause of this result, indicating relevance for the global climate. In tropical moist air such an UTH increase leads to a regional radiative effect of 0.5 +/- 0.4 W m(-2). We conclude that the effect of aerosols on UTH should be included in future studies of anthropogenic climate change and climate sensitivity.Peer reviewe

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Feuchtemessungen in der oberen Troposphäre mit Mikrowellen-Satellitensensoren und Radiosonden

    No full text
    This thesis describes results of several analyses of humidity measurements by microwave humidity sounders and radiosondes. The goal of this work is to pave the way for fully utilizing these measurements for climatological applications. High resolution radiosonde data are used to examine the variability of the clear-sky outgoing longwave radiation (OLR). The global variability of OLR is found to be 33 Wm-2, of which a large part can be attributed to temperature variations. The variability after filtering the temperature part is associated with the humidity variability in the horizontal and the vertical. The impact of the vertical structures on the OLR calculations is also investigated in detail. It is observed that smoothed profiles in relative humidity are sufficient to obtain the mean value of OLR, even though the variability cannot be exactly reproduced. AMSU-B Channel 18 brightness temperatures are sensitive to upper tropospheric humidity (UTH). A simple method is developed to transform the brightness temperatures to UTH. This method is validated with high quality radiosonde data. An initial attempt to make a UTH climatology and the usefulness of a robust estimator such as the median in climatological studies are discussed. Finally, a robust method was developed to compare the humidity measurements from satellite humidity sounders and radiosondes. The method is developed and tested using the high quality radiosonde data from the Lindenberg radiosonde station. A case study using different versions of the data shows that the method is sensitive to humidity differences in the different versions. The main result from the case study is that the corrected radiosonde data still have a slight dry bias in the upper troposphere. The method is then applied to assess the performance of different radiosonde sensors and stations. It isfound to be useful for monitoring the global radiosonde network, using the microwave satellite data as a benchmark

    A strong ice cloud event as seen by a microwave satellite sensor: Simulations and Observations

    Get PDF
    In this article, brightness temperatures observed by channels of the Advanced Microwave Sounding Unit-B (AMSU-B) instrument are compared to those simulated by a radiative transfer model, which can take into account the multiple scattering due to ice particles by using a discrete ordinate iterative solution method. The input fields, namely, the pressure, temperature, humidity, and cloud water content are taken from the short range forecast from the Met Office mesoscale model (UKMES). The comparison was made for a case study on the 25 January 2002 when a frontal system associated with significant cloud was present over the UK. It is demonstrated that liquid clouds have maximum impact on channel 16 of AMSU whereas ice clouds have maximum impact on channel 20. The main uncertainty for simulating microwave radiances is the assumptions about microphysical properties, such as size distribution, shape and orientation of the cloud particles, which are not known in the mesoscale model. The article examines the impact of these parameters on the cloud signal. The polarisation signal due to oriented ice particles at these frequencies is also discussed
    corecore