59 research outputs found

    Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts.

    Get PDF
    ObjectiveTo compare faecal microbial composition in patients with systemic sclerosis (SSc) from 2 independent cohorts with controls and to determine whether certain genera are associated with SSc-gastrointestinal tract (GIT) symptoms.DesignAdult patients with SSc from the University of California, Los Angeles (UCLA) and Oslo University Hospital (OUH) and healthy controls participated in this study (1:1:1). All participants provided stool specimens for 16S rRNA sequencing. Linear discriminant analysis effect size demonstrated genera with differential expression in SSc. Differential expression analysis for sequence count data identified specific genera associated with GIT symptoms as assessed by the GIT 2.0 questionnaire.ResultsThe UCLA-SSc and OUH-SSc cohorts were similar in age (52.1 and 60.5 years, respectively), disease duration (median (IQR): 6.6 (2.5-16.4) and 7.0 (1.0-19.2) years, respectively), gender distribution (88% and 71%, respectively), and GIT symptoms (mean (SD) total GIT 2.0 scores of 0.7 (0.6) and 0.6 (0.5), respectively). Principal coordinate analysis illustrated significant microbial community differences between SSc and controls (UCLA: p=0.001; OUH: p=0.002). Patients with SSc had significantly lower levels of commensal genera deemed to protect against inflammation, such as Bacteroides (UCLA and OUH), Faecalibacterium (UCLA), Clostridium (OUH); and significantly higher levels of pathobiont genera, such as Fusobacterium (UCLA), compared with controls. Increased abundance of Clostridium was associated with less severe GIT symptoms in both cohorts.ConclusionsThe present analysis detected specific aberrations in the lower GIT microbiota of patients with SSc from 2 geographically and ethnically distinct cohorts. These findings suggest that GIT dysbiosis may be a pathological feature of the SSc disease state

    Electrostatic Modifications of the Human Leukocyte Antigen-DR P9 Peptide-Binding Pocket and Susceptibility to Primary Sclerosing Cholangitis

    Get PDF
    The strongest genetic risk factors for primary sclerosing cholangitis (PSC) are found in the human leukocyte antigen (HLA) complex at chromosome 6p21. Genes in the HLA class II region encode molecules that present antigen to T lymphocytes. Polymorphisms in these genes are associated with most autoimmune diseases, most likely because they contribute to the specificity of immune responses. The aim of this study was to analyze the structure and electrostatic properties of the peptide-binding groove of HLA-DR in relation to PSC. Thus, four-digit resolution HLA-DRB1 genotyping was performed in 356 PSC patients and 366 healthy controls. Sequence information was used to assign which amino acids were encoded at all polymorphic positions. In stepwise logistic regressions, variations at residues 37 and 86 were independently associated with PSC (P = 1.2 × 10−32 and P = 1.8 × 10−22 in single-residue models, respectively). Three-dimensional modeling was performed to explore the effect of these key residues on the HLA-DR molecule. This analysis indicated that residue 37 was a major determinant of the electrostatic properties of pocket P9 of the peptide-binding groove. Asparagine at residue 37, which was associated with PSC, induced a positive charge in pocket P9. Tyrosine, which protected against PSC, induced a negative charge in this pocket. Consistent with the statistical observations, variation at residue 86 also indirectly influenced the electrostatic properties of this pocket. DRB1*13:01, which was PSC-associated, had a positive P9 pocket and DRB1*13:02, protective against PSC, had a negative P9 pocket. Conclusion: The results suggest that in patients with PSC, residues 37 and 86 of the HLA-DRβ chain critically influence the electrostatic properties of pocket P9 and thereby the range of peptides presented. (Hepatology 2011;53:1967-1976

    Plasma extracellular vesicles in people living with HIV and type 2 diabetes are related to microbial translocation and cardiovascular risk

    Get PDF
    HIV and type 2 diabetes (T2D) are both associated with gut microbiota alterations, low-grade endotoxemia and increased cardiovascular risk. We investigated the potential role of plasma extracellular vesicles (EVs) in relation to these processes. Plasma EVs were isolated by size exclusion chromatography in fasting individuals with HIV and T2D (n = 16), T2D only (n = 14), HIV only (n = 20) or healthy controls (n = 19), and characterized by transmission electron microscopy, western blot, nanoparticle tracking analysis and quantitative proteomics. The findings were compared to gut microbiota alterations, lipopolysaccharide levels and cardiovascular risk profile. Individuals with concomitant HIV and T2D had higher plasma EV concentration, which correlated closely with plasma lipopolysaccharides, triglycerides and Framingham score, but not with gut microbiota alterations. Proteomic analyses identified 558 human proteins, largely related to cardiometabolic disease genes and upstream regulation of inflammatory pathways, including IL-6 and IL-1 beta, as well as 30 bacterial proteins, mostly from lipopolysaccharide-producing Proteobacteria. Our study supports that EVs are related to microbial translocation processes in individuals with HIV and T2D. Their proteomic content suggests a contributing role in low-grade inflammation and cardiovascular risk development. The present approach for exploring gut-host crosstalk can potentially identify novel diagnostic biomarkers and therapeutic targets.Peer reviewe

    Mutational Characterization of the Bile Acid Receptor TGR5 in Primary Sclerosing Cholangitis

    Get PDF
    TGR5, the G protein-coupled bile acid receptor 1 (GPBAR1), has been linked to inflammatory pathways as well as bile homeostasis, and could therefore be involved in primary sclerosing cholangitis (PSC) a chronic inflammatory bile duct disease. We aimed to extensively investigate TGR5 sequence variation in PSC, as well as functionally characterize detected variants. Complete resequencing of TGR5 was performed in 267 PSC patients and 274 healthy controls. Six nonsynonymous mutations were identified in addition to 16 other novel single-nucleotide polymorphisms. To investigate the impact from the nonsynonymous variants on TGR5, we created a receptor model, and introduced mutated TGR5 constructs into human epithelial cell lines. By using confocal microscopy, flow cytometry and a cAMP-sensitive luciferase assay, five of the nonsynonymous mutations (W83R, V178M, A217P, S272G and Q296X) were found to reduce or abolish TGR5 function. Fine-mapping of the previously reported PSC and UC associated locus at chromosome 2q35 in large patient panels revealed an overall association between the TGR5 single-nucleotide polymorphism rs11554825 and PSC (odds ratio = 1.14, 95% confidence interval: 1.03-1.26, p = 0.010) and UC (odds ratio = 1.19, 95% confidence interval 1.11-1.27, p = 8.5 x 10(-7)), but strong linkage disequilibrium precluded demarcation of TGR5 from neighboring genes. Resequencing of TGR5 along with functional investigations of novel variants provided unique insight into an important candidate gene for several inflammatory and metabolic conditions. While significant TGR5 associations were detected in both UC and PSC, further studies are needed to conclusively define the role of TGR5 variation in these diseases

    Recurrent attacks of acute hepatic porphyria: major role of the chronic inflammatory response in the liver

    Get PDF
    Acute intermittent porphyria (AIP) is an inherited disorder of heme metabolism characterized by life-threatening acute neurovisceral attacks due to the induction of hepatic -aminolevulinic acid synthase 1 (ALAS1) associated with hydroxymethylbilane synthase (HMBS) deficiency. Hemin represses ALAS1 and restores metabolic equilibrium. The main issue in the medical care of AIP patients is the occurrence of debilitating recurrent attacks. Chronically ill patients require repeated hemin infusions and develop secondary hemochromatosis and have a poorer quality of life. To decipher the mechanisms underlying recurrence in AIP patients, we studied the metabolic pathways altered by chronic hemin administration. A follow-up study was conducted between 1974 and 2015 and included 602 French AIP patients, of whom 46 had recurrent AIP. Moreover, we studied the hepatic transcriptome, serum proteome, liver macrophage polarization and oxidative and inflammatory profiles of Hmbs-/- mice chronically treated by hemin and extended the investigations to 5 human explanted livers. The introduction of hemin into the pharmacopeia has coincided with a 4.4-fold increase in the prevalence of chronic patients. We show that repeated hemin infusions trigger a high level heme oxygenase 1 (HO1) response, induce a pro-oxidative iron accumulation and a complex pattern of liver inflammation with macrophage infiltration. Conclusion: chronically heme-treated AIP patients may present with symptoms of an inflammatory disease responsible for an adaptive HO1 induction that could deplete the free heme pool inducing ALAS1. Hemin remains the most effective treatment but should be restricted to patients with severe forms of AIP to prevent chronic damage

    Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality

    Get PDF
    AG has received support by NordForsk Nordic Trial Alliance (NTA) grant, by Academy of Finland Fellow grant N. 323116 and the Academy of Finland for PREDICT consortium N. 340541. The Richards research group is supported by the Canadian Institutes of Health Research (CIHR) (365825 and 409511), the Lady Davis Institute of the Jewish General Hospital, the Canadian Foundation for Innovation (CFI), the NIH Foundation, Cancer Research UK, Genome Québec, the Public Health Agency of Canada, the McGill Interdisciplinary Initiative in Infection and Immunity and the Fonds de Recherche Québec Santé (FRQS). TN is supported by a research fellowship of the Japan Society for the Promotion of Science for Young Scientists. GBL is supported by a CIHR scholarship and a joint FRQS and Québec Ministry of Health and Social Services scholarship. JBR is supported by an FRQS Clinical Research Scholarship. Support from Calcul Québec and Compute Canada is acknowledged. TwinsUK is funded by the Welcome Trust, the Medical Research Council, the European Union, the National Institute for Health Research-funded BioResource and the Clinical Research Facility and Biomedical Research Centre based at Guy’s and St. Thomas’ NHS Foundation Trust in partnership with King’s College London. The Biobanque Québec COVID19 is funded by FRQS, Genome Québec and the Public Health Agency of Canada, the McGill Interdisciplinary Initiative in Infection and Immunity and the Fonds de Recherche Québec Santé. These funding agencies had no role in the design, implementation or interpretation of this study. The COVID19-Host(a)ge study received infrastructure support from the DFG Cluster of Excellence 2167 “Precision Medicine in Chronic Inflammation (PMI)” (DFG Grant: “EXC2167”). The COVID19-Host(a)ge study was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). Genotyping in COVID19-Host(a)ge was supported by a philantropic donation from Stein Erik Hagen. The COVID GWAs, Premed COVID-19 study (COVID19-Host(a)ge_3) was supported by "Grupo de Trabajo en Medicina Personalizada contra el COVID-19 de Andalucia"and also by the Instituto de Salud Carlos III (CIBERehd and CIBERER). Funding comes from COVID-19-GWAS, COVID-PREMED initiatives. Both of them are supported by "Consejeria de Salud y Familias" of the Andalusian Government. DMM is currently funded by the the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018). The Columbia University Biobank was supported by Columbia University and the National Center for Advancing Translational Sciences, NIH, through Grant Number UL1TR001873. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or Columbia University. The SPGRX study was supported by the Consejería de Economía, Conocimiento, Empresas y Universidad #CV20-10150. The GEN-COVID study was funded by: the MIUR grant “Dipartimenti di Eccellenza 2018-2020” to the Department of Medical Biotechnologies University of Siena, Italy; the “Intesa San Paolo 2020 charity fund” dedicated to the project NB/2020/0119; and philanthropic donations to the Department of Medical Biotechnologies, University of Siena for the COVID-19 host genetics research project (D.L n.18 of March 17, 2020). Part of this research project is also funded by Tuscany Region “Bando Ricerca COVID-19 Toscana” grant to the Azienda Ospedaliero Universitaria Senese (CUP I49C20000280002). Authors are grateful to: the CINECA consortium for providing computational resources; the Network for Italian Genomes (NIG) (http://www.nig.cineca.it) for its support; the COVID-19 Host Genetics Initiative (https://www.covid19hg.org/); the Genetic Biobank of Siena, member of BBMRI-IT, Telethon Network of Genetic Biobanks (project no. GTB18001), EuroBioBank, and RD-Connect, for managing specimens. Genetics against coronavirus (GENIUS), Humanitas University (COVID19-Host(a)ge_4) was supported by Ricerca Corrente (Italian Ministry of Health), intramural funding (Fondazione Humanitas per la Ricerca). The generous contribution of Banca Intesa San Paolo and of the Dolce&Gabbana Fashion Firm is gratefully acknowledged. Data acquisition and sample processing was supported by COVID-19 Biobank, Fondazione IRCCS Cà Granda Milano; LV group was supported by MyFirst Grant AIRC n.16888, Ricerca Finalizzata Ministero della Salute RF-2016-02364358, Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, the European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- “Liver Investigation: Testing Marker Utility in Steatohepatitis”, Programme “Photonics” under grant agreement “101016726” for the project “REVEAL: Neuronal microscopy for cell behavioural examination and manipulation”, Fondazione Patrimonio Ca’ Granda “Liver Bible” PR-0361. DP was supported by Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, CV PREVITAL “Strategie di prevenzione primaria nella popolazione Italiana” Ministero della Salute, and Associazione Italiana per la Prevenzione dell’Epatite Virale (COPEV). Genetic modifiers for COVID-19 related illness (BeLCovid_1) was supported by the "Fonds Erasme". The Host genetics and immune response in SARS-Cov-2 infection (BelCovid_2) study was supported by grants from Fondation Léon Fredericq and from Fonds de la Recherche Scientifique (FNRS). The INMUNGEN-CoV2 study was funded by the Consejo Superior de Investigaciones Científicas. KUL is supported by the German Research Foundation (LU 1944/3-1) SweCovid is funded by the SciLifeLab/KAW national COVID-19 research program project grant to Michael Hultström (KAW 2020.0182) and the Swedish Research Council to Robert Frithiof (2014-02569 and 2014-07606). HZ is supported by Jeansson Stiftelser, Magnus Bergvalls Stiftelse. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping for the COMRI cohort was performed and funded by the Genotyping Laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki, Helsinki, Finland. These funding agencies had no role in the design, implementation or interpretation of this study.Background: There is considerable variability in COVID-19 outcomes amongst younger adults—and some of this variation may be due to genetic predisposition. We characterized the clinical implications of the major genetic risk factor for COVID-19 severity, and its age-dependent effect, using individual-level data in a large international multi-centre consortium. Method: The major common COVID-19 genetic risk factor is a chromosome 3 locus, tagged by the marker rs10490770. We combined individual level data for 13,424 COVID-19 positive patients (N=6,689 hospitalized) from 17 cohorts in nine countries to assess the association of this genetic marker with mortality, COVID-19-related complications and laboratory values. We next examined if the magnitude of these associations varied by age and were independent from known clinical COVID-19 risk factors. Findings: We found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (hazard ratio [HR] 1·4, 95% confidence interval [CI] 1·2–1·6) and COVID-19 related mortality (HR 1·5, 95%CI 1·3–1·8). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (odds ratio [OR] 2·0, 95%CI 1·6-2·6), venous thromboembolism (OR 1·7, 95%CI 1·2-2·4), and hepatic injury (OR 1·6, 95%CI 1·2-2·0). Risk allele carriers ≤ 60 years had higher odds of death or severe respiratory failure (OR 2·6, 95%CI 1·8-3·9) compared to those > 60 years OR 1·5 (95%CI 1·3-1·9, interaction p-value=0·04). Amongst individuals ≤ 60 years who died or experienced severe respiratory COVID-19 outcome, we found that 31·8% (95%CI 27·6-36·2) were risk variant carriers, compared to 13·9% (95%CI 12·6-15·2%) of those not experiencing these outcomes. Prediction of death or severe respiratory failure among those ≤ 60 years improved when including the risk allele (AUC 0·82 vs 0·84, p=0·016) and the prediction ability of rs10490770 risk allele was similar to, or better than, most established clinical risk factors. Interpretation: The major common COVID-19 risk locus on chromosome 3 is associated with increased risks of morbidity and mortality—and these are more pronounced amongst individuals ≤ 60 years. The effect on COVID-19 severity was similar to, or larger than most established risk factors, suggesting potential implications for clinical risk management.Academy of Finland Fellow grant N. 323116Academy of Finland for PREDICT consortium N. 340541.Canadian Institutes of Health Research (CIHR) (365825 and 409511)Lady Davis Institute of the Jewish General HospitalCanadian Foundation for Innovation (CFI)NIH FoundationCancer Research UKGenome QuébecPublic Health Agency of CanadaMcGill Interdisciplinary Initiative in Infection and Immunity and the Fonds de Recherche Québec Santé (FRQS)Japan Society for the Promotion of Science for Young ScientistsCIHR scholarship and a joint FRQS and Québec Ministry of Health and Social Services scholarshipFRQS Clinical Research ScholarshipCalcul QuébecCompute CanadaWelcome TrustMedical Research CouncEuropean UnionNational Institute for Health Research-funded BioResourceClinical Research Facility and Biomedical Research Centre based at Guy’s and St. Thomas’ NHS Foundation TrustKing’s College LondonGenome QuébecPublic Health Agency of CanadaMcGill Interdisciplinary Initiative in Infection and ImmunityFonds de Recherche Québec Santé(DFG Grant: “EXC2167”)(CompLS grant 031L0165)Stein Erik Hagen"Grupo de Trabajo en Medicina Personalizada contra el COVID-19 de Andalucia"Instituto de Salud Carlos III (CIBERehd and CIBERER)COVID-19-GWASCOVID-PREMED initiatives"Consejeria de Salud y Familias" of the Andalusian GovernmentAndalusian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018)Columbia UniversityNational Center for Advancing Translational SciencesNIH Grant Number UL1TR001873Consejería de Economía, Conocimiento, Empresas y Universidad #CV20-10150MIUR grant “Dipartimenti di Eccellenza 2018-2020”“Intesa San Paolo 2020 charity fund” dedicated to the project NB/2020/0119Tuscany Region “Bando Ricerca COVID-19 Toscana”CINECA consortiumNetwork for Italian Genomes (NIG)COVID-19 Host Genetics InitiativeGenetic Biobank of SienaEuroBioBankRD-ConnectRicerca Corrente (Italian Ministry of Health)Fondazione Humanitas per la RicercaBanca Intesa San PaoloDolce&Gabbana Fashion FirmCOVID-19 BiobankFondazione IRCCS Cà Granda MilanoMyFirst Grant AIRC n.16888Ricerca Finalizzata Ministero della Salute RF-2016-02364358Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoEuropean Union (EU) Programme Horizon 2020 (under grant agreement No. 777377)“Photonics” “101016726”Fondazione Patrimonio Ca’ Granda “Liver Bible” PR-0361CV PREVITAL “Strategie di prevenzione primaria nella popolazione Italiana” Ministero della Salute, and Associazione Italiana per la Prevenzione dell’Epatite Virale (COPEV)"Fonds Erasme"Fondation Léon FredericqFonds de la Recherche Scientifique (FNRS)Consejo Superior de Investigaciones CientíficasGerman Research Foundation (LU 1944/3-1)SciLifeLab/KAW national COVID-19 research program project (KAW 2020.0182)Swedish Research Council (2014-02569 and 2014-07606)Jeansson Stiftelser, Magnus Bergvalls StiftelseTechnical University of Munich, Munich, GermanyGenotyping Laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki, Helsinki, Finlan

    Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study

    Get PDF
    Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    Rapid and Bifunctional Chemoselective Metabolome Analysis of Liver Disease Plasma Using the Reagent 4‐Nitrophenyl‐2H‐azirine

    No full text
    Primary sclerosing cholangitis (PSC) is a chronic inflammatory disease of the bile ducts that has been associated with diverse metabolic carboxylic acids. Mass spectrometric techniques are the method of choice for their analysis. However, the broad investigation of this metabolite class remains challenging. Derivatization of carboxylic acids represents a strategy to overcome these limitations but available methods suffer from diverse analytical challenges. Herein, we have designed a novel strategy introducing 4-nitrophenyl-2H-azirine as a new chemoselective moiety for the first time for carboxylic acid metabolites. This moiety was selected as it rapidly forms a stable amide bond and also generates a new ketone, which can be analyzed by our recently developed quant-SCHEMA method specific for carbonyl metabolites. Optimization of this new method revealed a high reproducibility and robustness, which was utilized to validate 102 metabolic carboxylic acids using authentic synthetic standard conjugates in human plasma samples including nine metabolites that were newly detected. Using this sequential analysis of the carbonyl- and carboxylic acid-metabolomes revealed alterations of the ketogenesis pathway, which demonstrates the vast benefit of our unique methodology. We anticipate that the developed azirine moiety with rapid functional group transformation will find broad application in diverse chemical biology research fields
    corecore