174 research outputs found

    Mean structure and variability of the cold dome northeast of Taiwan

    Get PDF
    Author Posting. © The Oceanography Society, 2011. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 24 no. 4 (2011): 100–109, doi:10.5670/oceanog.2011.98.The "cold dome" off northeastern Taiwan is one of the distinctive oceanic features in the seas surrounding Taiwan. The cold dome is important because persistent upwelling makes the region highly biologically productive. This article uses historical data, recent observations, and satellite-observed sea surface temperatures (SST) to describe the mean structure and variability of the cold dome. The long-term mean position of the cold dome, using the temperature at 50 m depth as a reference, is centered at 25.625°N, 122.125°E. The cold dome has a diameter of approximately 100 km, and is maintained by cold ( 34.5) waters upwelled along the continental slope. The ocean currents around the cold dome, although weak, flow counterclockwise. The monsoon-driven winter intrusion of the Kuroshio current onto the East China Sea shelf intensifies the upwelling and carries more subsurface water up to the cold dome than during the summer monsoon season. On a shorter timescale, the cold dome's properties can be significantly modified by the passage of typhoons, which creates favorable physical conditions for short-term Kuroshio intrusions in summer. The surface expression of the cold dome viewed from satellite SST images is often not domelike but instead is an irregular shape with numerous filaments, and thus may contribute substantially to shelf/slope exchange. As a result of persistent upwelling, typhoon passage, and monsoon forcing, higher chlorophyll a concentrations, and thus higher primary productivity, are frequently observed in the vicinity of the cold dome.The National Science Council (NSC) of Taiwan sponsored this study under grant NSC98-2611-M-002-019-MY3. NSC supported C.-C. Chen under grant NSC98-2611-M-003-001-MY3

    Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation

    Get PDF
    Background: Silicon dioxide composites have been found to enhance the mechanical properties of scaffolds and to support growth of human adipose tissue-derived stem cells (hADSCs) both in vitro and in vivo. Silica (silicon dioxide alone) exists as differently sized particles when suspended in culture medium, but it is not clear whether particle size influences the beneficial effect of silicon dioxide on hADSCs. In this study, we examined the effect of different sized particles on growth and mitogen-activated protein kinase signaling in hADSCs. Methods: Silica gel was prepared by a chemical reaction using hydrochloric acid and sodium silicate, washed, sterilized, and suspended in serum-free culture medium for 48 hours, and then sequentially filtered through a 0.22 mu m filter (filtrate containing nanoparticles smaller than 220 nm; silica NPs). hADSCs were incubated with silica NPs or 3 mu m silica microparticles (MPs), examined by transmission electron microscopy, and assayed for cell proliferation, apoptosis, and mitogen-activated protein kinase signaling. Results: Eighty-nine percent of the silica NPs were around 50-120 nm in size. When hADSCs were treated with the study particles, silica NPs were observed in endocytosed vacuoles in the cytosol of hADSCs, but silica MPs showed no cell entry. Silica NPs increased the proliferation of hADSCs, but silica MPs had no significant effect in this regard. Instead, silica MPs induced slight apoptosis. Silica NPs increased phosphorylation of extracellular signal-related kinase (ERK) 1/2, while silica MPs increased phosphorylation of p38. Silica NPs had no effect on phosphorylation of Janus kinase or p38. Pretreatment with PD98059, a MEK inhibitor, prevented the ERK1/2 phosphorylation and proliferation induced by silica NPs. Conclusion: Scaffolds containing silicon dioxide for tissue engineering may enhance cell growth through ERK1/2 activation only when NPs around 50-120 nm in size are included, and single component silica-derived NPs could be useful for bioscaffolds in stem cell therapy.open112523sciescopu

    High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment; A Prelude to an alpha-Omega Dynamo

    Full text link
    The Ω\Omega-phase of the liquid sodium α\alpha-Ω\Omega dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, Bϕ8×BrB_{\phi} \simeq 8\times B_r from the radial component of an applied poloidal magnetic field, BrB_r. This enhanced toroidal field is produced by rotational shear in stable Couette flow within liquid sodium at Rm120Rm \simeq 120. The small turbulence in stable Taylor-Couette flow is caused by Ekman flow where (δv/v)2103 (\delta v/v)^2 \sim 10^{-3} . This high Ω\Omega-gain in low turbulence flow contrasts with a smaller Ω\Omega-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays only a smaller diffusive role that enables magnetic flux linkage.Comment: 5 pages, 5 figures, submitted PRL revised version: add one author, minor typo'

    Variation in 5-hydroxymethylcytosine across human cortex and cerebellum

    Get PDF
    Background: The most widely utilized approaches for quantifying DNA methylation involve the treatment of genomic DNA with sodium bisulfite; however, this method cannot distinguish between 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Previous studies have shown that 5hmC is enriched in the brain, although little is known about its genomic distribution and how it differs between anatomical regions and individuals. In this study, we combine oxidative bisulfite (oxBS) treatment with the Illumina Infinium 450K BeadArray to quantify genome-wide patterns of 5hmC in two distinct anatomical regions of the brain from multiple individuals. Results: We identify 37,145 and 65,563 sites passing our threshold for detectable 5hmC in the prefrontal cortex and cerebellum respectively, with 23,445 loci common across both brain regions. Distinct patterns of 5hmC are identified in each brain region, with notable differences in the genomic location of the most hydroxymethylated loci between these brain regions. Tissue-specific patterns of 5hmC are subsequently confirmed in an independent set of prefrontal cortex and cerebellum samples. Conclusions: This study represents the first systematic analysis of 5hmC in the human brain, identifying tissue-specific hydroxymethylated positions and genomic regions characterized by inter-individual variation in DNA hydroxymethylation. This study demonstrates the utility of combining oxBS-treatment with the Illumina 450k methylation array to systematically quantify 5hmC across the genome and the potential utility of this approach for epigenomic studies of brain disorders

    eIF5A Promotes Translation Elongation, Polysome Disassembly and Stress Granule Assembly

    Get PDF
    Stress granules (SGs) are cytoplasmic foci at which untranslated mRNAs accumulate in cells exposed to environmental stress. We have identified ornithine decarboxylase (ODC), an enzyme required for polyamine synthesis, and eIF5A, a polyamine (hypusine)-modified translation factor, as proteins required for arsenite-induced SG assembly. Knockdown of deoxyhypusine synthase (DHS) or treatment with a deoxyhypusine synthase inhibitor (GC7) prevents hypusine modification of eIF5A as well as arsenite-induced polysome disassembly and stress granule assembly. Time-course analysis reveals that this is due to a slowing of stress-induced ribosome run-off in cells lacking hypusine-eIF5A. Whereas eIF5A only marginally affects protein synthesis under normal conditions, it is required for the rapid onset of stress-induced translational repression. Our results reveal that hypusine-eIF5A-facilitated translation elongation promotes arsenite-induced polysome disassembly and stress granule assembly in cells subjected to adverse environmental conditions

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore