96 research outputs found

    Next generation PCR microfluidic system

    Get PDF
    Stokes Bio, founded in 2005, develops innovative microfluidic technologies. In 2008 in collaboration with Monsanto, an application driven development for a high-throughput instrument in the detection and characterisation of Single Nucleotide Polymorphisms (SNPs) in agricultural crops was initiated. Stokes technology is designed to generate aqueous nanolitre scale droplets of reagents and samples, wrapped in a carrier fluid from standard microtitre plates and to mix them using Stokes Bio’s proprietary liquid bridge mixers. Following mixing the complete assay is transferred in the carrier fluid through the use of a continuous flow system, to a flow through thermal cycler and an optical reading station. This poster summarises results collated using the Stokes Bio genotyping platform currently based in Monsanto. Data will be presented to illustrate the dynamic capabilities of the instrument, highlighting the enhanced sensitivity and reproducibility of PCR in droplet format compared to well-based technologies

    Hydroxychloroquine for treatment of non-hospitalized adults with COVID-19: A meta-analysis of individual participant data of randomized trials

    Get PDF
    Hydroxychloroquine (HCQ) was initially promoted as an oral therapy for early treatment of coronavirus disease 2019 (COVID-19). Conventional meta-analyses cannot fully address the heterogeneity of different designs and outcomes of randomized controlled trials (RCTs) assessing the efficacy of HCQ in outpatients with mild COVID-19. We conducted a pooled analysis of individual participant data from RCTs that evaluated the effect of HCQ on hospitalization and viral load reduction in outpatients with confirmed COVID-19. We evaluated the overall treatment group effect by log-likelihood ratio test (−2LL) from a generalized linear mixed model to accommodate correlated longitudinal binary data. The analysis included data from 11 RCTs. The outcome of virological effect, assessed in 1560 participants (N = 795 HCQ, N = 765 control), did not differ significantly between the two treatment groups (−2LL = 7.66; p = 0.18) when adjusting for cohort, duration of symptoms, and comorbidities. The decline in polymerase chain reaction positive tests from day 1 to 7 was 42.0 and 41.6 percentage points in the HCQ and control groups, respectively. Among the 2037 participants evaluable for hospitalization (N = 1058 HCQ, N = 979 control), we found no significant differences in hospitalization rate between participants receiving HCQ and controls (odds ratio 0.995; 95% confidence interval 0.614–1.610; −2LL = 0.0; p = 0.98) when adjusting for cohort, duration of symptoms, and comorbidities. This individual participant data meta-analysis of 11 HCQ trials that evaluated severe acute respiratory syndrome-coronavirus 2 viral clearance and COVID-19 hospitalization did not show a clinical benefit of HCQ. Our meta-analysis provides evidence to support the interruption in the use of HCQ in mild COVID-19 outpatients to reduce progression to severe disease

    Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    Get PDF
    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants

    Many Labs 5:Testing pre-data collection peer review as an intervention to increase replicability

    Get PDF
    Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3?9; median total sample = 1,279.5, range = 276?3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (?r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00?.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19?.50)

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A nationwide study of adults admitted to hospital with diabetic ketoacidosis or hyperosmolar hyperglycaemic state and COVID‐19

    Get PDF
    AimsTo investigate characteristics of people hospitalized with coronavirus-disease-2019 (COVID-19) and diabetic ketoacidosis (DKA) or hyperosmolar hyperglycaemic state (HHS), and to identify risk factors for mortality and intensive care admission.Materials and methodsRetrospective cohort study with anonymized data from the Association of British Clinical Diabetologists nationwide audit of hospital admissions with COVID-19 and diabetes, from start of pandemic to November 2021. The primary outcome was inpatient mortality. DKA and HHS were adjudicated against national criteria. Age-adjusted odds ratios were calculated using logistic regression.ResultsIn total, 85 confirmed DKA cases, and 20 HHS, occurred among 4073 people (211 type 1 diabetes, 3748 type 2 diabetes, 114 unknown type) hospitalized with COVID-19. Mean (SD) age was 60 (18.2) years in DKA and 74 (11.8) years in HHS (p < .001). A higher proportion of patients with HHS than with DKA were of non-White ethnicity (71.4% vs 39.0% p = .038). Mortality in DKA was 36.8% (n = 57) and 3.8% (n = 26) in type 2 and type 1 diabetes respectively. Among people with type 2 diabetes and DKA, mortality was lower in insulin users compared with non-users [21.4% vs. 52.2%; age-adjusted odds ratio 0.13 (95% CI 0.03-0.60)]. Crude mortality was lower in DKA than HHS (25.9% vs. 65.0%, p = .001) and in statin users versus non-users (36.4% vs. 100%; p = .035) but these were not statistically significant after age adjustment.ConclusionsHospitalization with COVID-19 and adjudicated DKA is four times more common than HHS but both associate with substantial mortality. There is a strong association of previous insulin therapy with survival in type 2 diabetes-associated DKA

    TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    Get PDF
    Tiina Paunio on työryhmän UK10K jäsen.The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions.Peer reviewe
    corecore