100 research outputs found

    The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers.

    Get PDF
    Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma exhibit a 10,000-fold greater affinity for human hepatocellular carcinoma than for hepatocytes, endothelial cells or immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, small interfering RNA and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer enable a single protocell loaded with a drug cocktail to kill a drug-resistant human hepatocellular carcinoma cell, representing a 10(6)-fold improvement over comparable liposomes

    Time perspective as a predictor of smoking status: findings from the International Tobacco Control (ITC) Surveys in Scotland, France, Germany, China, and Malaysia

    Get PDF
    BACKGROUND: Prior studies have demonstrated that time perspective-the propensity to consider short-versus long-term consequences of one\u27s actions-is a potentially important predictor of health-related behaviors, including smoking. However, most prior studies have been conducted within single high-income countries. The aim of this study was to examine whether time perspective was associated with the likelihood of being a smoker or non-smoker across five countries that vary in smoking behavior and strength of tobacco control policies. METHODS: The data were from the International Tobacco Control (ITC) Surveys in five countries with large probability samples of both smokers (N=10,341) and non-smokers (N=4,955): Scotland, France, Germany, China, and Malaysia. The surveys were conducted between 2005-2008. Survey respondents indicated their smoking status (smoker vs. non-smoker) and time perspective (future oriented vs. not future-oriented) and provided demographic information. RESULTS: Across all five countries, non-smokers were significantly more likely to be future-oriented (66%) than were smokers (57%), χ(2)(1, N = 15,244) = 120.64, p < .001. This bivariate relationship between time perspective and smoking status held in a multivariate analysis. After controlling for country, age, sex, income, education, and ethnicity (language in France), those who were future-oriented had 36% greater odds of being a non-smoker than a smoker (95% CI: 1.22 to 1.51, p<.001). CONCLUSION: These findings establish time perspective as an important predictor of smoking status across multiple countries and suggest the potential value of incorporating material to enhance future orientation in smoking cessation interventions

    Involvement of Dopamine Receptors in Binge Methamphetamine-Induced Activation of Endoplasmic Reticulum and Mitochondrial Stress Pathways

    Get PDF
    Single large doses of methamphetamine (METH) cause endoplasmic reticulum (ER) stress and mitochondrial dysfunctions in rodent striata. The dopamine D1 receptor appears to be involved in these METH-mediated stresses. The purpose of this study was to investigate if dopamine D1 and D2 receptors are involved in ER and mitochondrial stresses caused by single-day METH binges in the rat striatum. Male Sprague-Dawley rats received 4 injections of 10 mg/kg of METH alone or in combination with a putative D1 or D2 receptor antagonist, SCH23390 or raclopride, respectively, given 30 min prior to each METH injection. Rats were euthanized at various timepoints afterwards. Striatal tissues were used in quantitative RT-PCR and western blot analyses. We found that binge METH injections caused increased expression of the pro-survival genes, BiP/GRP-78 and P58IPK, in a SCH23390-sensitive manner. METH also caused up-regulation of ER-stress genes, Atf2, Atf3, Atf4, CHOP/Gadd153 and Gadd34. The expression of heat shock proteins (HSPs) was increased after METH injections. SCH23390 completely blocked induction in all analyzed ER stress-related proteins that included ATF3, ATF4, CHOP/Gadd153, HSPs and caspase-12. The dopamine D2-like antagonist, raclopride, exerted small to moderate inhibitory influence on some METH-induced changes in ER stress proteins. Importantly, METH caused decreases in the mitochondrial anti-apoptotic protein, Bcl-2, but increases in the pro-apoptotic proteins, Bax, Bad and cytochrome c, in a SCH23390-sensitive fashion. In contrast, raclopride provided only small inhibition of METH-induced changes in mitochondrial proteins. These findings indicate that METH-induced activation of striatal ER and mitochondrial stress pathways might be more related to activation of SCH23390-sensitive receptors

    COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records

    Get PDF
    BACKGROUND: Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework. METHODS: In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FINDINGS: Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1. INTERPRETATION: Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources. FUNDING: British Heart Foundation Data Science Centre, led by Health Data Research UK

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to examine age‐related trajectories inferred from cross‐sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3–90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter‐individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age‐related morphometric patterns

    Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years

    Get PDF
    Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large‐scale studies. In response, we used cross‐sectional data from 17,075 individuals aged 3–90 years from the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to infer age‐related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta‐analysis and one‐way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes

    The molecular pathology of Rett syndrome: synopsis and update

    No full text
    Genetic mutations of the X-linked gene MECP2, encoding methyl-CpG-binding protein 2, cause Rett syndrome (RTT) and other neurological disorders. It is increasingly recognized that MECP2 is a multifunctional protein, with at least four different functional domains: (1) a methyl-CpG-binding domain; (2) an arginine-glycine repeat RNA-binding domain; (3) a transcriptional repression domain; and (4) an RNA splicing factor binding region (WW group II binding domain). There is evidence that MECP2 is important for large-scale reorganization of pericentromeric heterochromatin during differentiation. Studies in MECP2-deficient mouse brain have identified a diverse set of genes with altered levels of mRNA expression or splicing. It is still unclear how altered MECP2 function ultimately results in neuronal disease after a period of grossly normal development. However, mounting evidence suggests that neuronal health and development depend on precise regulation of MECP2 expression. In genetically engineered mice, both increased and decreased levels of MECP2 result in a neurological phenotype. Furthermore, it was recently discovered that MECP2 gene duplications underlie a small number of atypical Rett cases and mental retardation syndromes. The finding that MECP2 levels are tightly regulated in neurons has important implications for the design of gene replacement or reactivation strategies for treatment of RTT, because affected individuals typically are somatic mosaics with one set of cells expressing a mutated MECP2 from the affected X, and another set expressing normal MECP2 from the unaffected X. Further studies are necessary to elucidate the molecular pathology of both loss-of-function and gain-of-function mutations in MECP2

    Amplified : promotion of a music web site

    No full text
    This project seeks to gain an understanding of online marketing and how it can be applied to a web site on local music. It explores the ways of promoting a web site through the Internet and discusses the integration of interactive marketing with traditional means of publicity. The report is organised into steps involved in our study to give an idea of the learning processes involved. It is designed to help online businesses establish themselves and gain a presence both in the virtual and real world.Bachelor of Communication Studie
    • 

    corecore