364 research outputs found
Complementary network-based approaches for exploring genetic structure and functional connectivity in two vulnerable, endemic ground squirrels
The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel (Urocitellus brunneus) and the southern Idaho ground squirrel (U. endemicus), two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity. Population graph analyses revealed that local extinction rapidly reduced connectivity for the southern species, while connectivity for the northern species could be maintained following local extinction. Results from gravity models complemented those of population graph analyses, and indicated that potential vegetation productivity and topography drove connectivity in the northern species. For the southern species, development (roads) and small-scale topography reduced connectivity, while greater potential vegetation productivity increased connectivity. Taken together, the results of the two network-based methods (population graph analyses and gravity models) suggest the need for increased conservation action for the southern species, and that management efforts have been effective at maintaining habitat quality throughout the current range of the northern species. To prevent further declines, we encourage the continuation of management efforts for the northern species, whereas conservation of the southern species requires active management and additional measures to curtail habitat fragmentation. Our combination of population graph analyses and gravity models can inform conservation strategies of other species exhibiting patchy distributions
T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium.
The regulation of mucosal immune function is critical to host protection from enteric pathogens but is incompletely understood. The nervous system and the neurotransmitter acetylcholine play an integral part in host defense against enteric bacterial pathogens. Here we report that acetylcholine producing-T-cells, as a non-neuronal source of ACh, were recruited to the colon during infection with the mouse pathogen Citrobacter rodentium. These ChAT+ T-cells did not exclusively belong to one Th subset and were able to produce IFNγ, IL-17A and IL-22. To interrogate the possible protective effect of acetylcholine released from these cells during enteric infection, T-cells were rendered deficient in their ability to produce acetylcholine through a conditional gene knockout approach. Significantly increased C. rodentium burden was observed in the colon from conditional KO (cKO) compared to WT mice at 10 days post-infection. This increased bacterial burden in cKO mice was associated with increased expression of the cytokines IL-1β, IL-6, and TNFα, but without significant changes in T-cell and ILC associated IL-17A, IL-22, and IFNγ, or epithelial expression of antimicrobial peptides, compared to WT mice. Despite the increased expression of pro-inflammatory cytokines during C. rodentium infection, inducible nitric oxide synthase (Nos2) expression was significantly reduced in intestinal epithelial cells of ChAT T-cell cKO mice 10 days post-infection. Additionally, a cholinergic agonist enhanced IFNγ-induced Nos2 expression in intestinal epithelial cell in vitro. These findings demonstrated that acetylcholine, produced by specialized T-cells that are recruited during C. rodentium infection, are a key mediator in host-microbe interactions and mucosal defenses
Recommended from our members
Disruption of Thyroid Hormone Activation in Type 2 Deiodinase Knockout Mice Causes Obesity With Glucose Intolerance and Liver Steatosis Only at Thermoneutrality
Objective: Thyroid hormone accelerates energy expenditure; thus, hypothyroidism is intuitively associated with obesity. However, studies failed to establish such a connection. In brown adipose tissue (BAT), thyroid hormone activation via type 2 deiodinase (D2) is necessary for adaptive thermogenesis, such that mice lacking D2 (D2KO) exhibit an impaired thermogenic response to cold. Here we investigate whether the impaired thermogenesis of D2KO mice increases their susceptibility to obesity when placed on a high-fat diet. Research Design and Methods: To test this, D2KO mice were admitted to a comprehensive monitoring system acclimatized to room temperature (22C) or thermoneutrality (30C) and kept either on chow or high-fat diet for 60 days. Results: At 22C, D2KO mice preferentially oxidize fat, have a similar sensitivity to diet-induced obesity, and are supertolerant to glucose. However, when thermal stress is eliminated at thermoneutrality (30C), an opposite phenotype is encountered, one that includes obesity, glucose intolerance, and exacerbated hepatic steatosis. We suggest that a compensatory increase in BAT sympathetic activation of the D2KO mice masks metabolic repercussions that they would otherwise exhibit. Conclusions: Thus, upon minimization of thermal stress, high-fat feeding reveals the defective capacity of D2KO mice for diet-induced thermogenesis, provoking a paradigm shift in the understanding of the role of the thyroid hormone in metabolism
Recommended from our members
Landscape effects on gene flow for a climate-sensitive montane species, the American pika
Climate change is arguably the greatest challenge to conservation of our time. Most vulnerability assessments rely on past and current species distributions to predict future persistence but ignore species’ abilities to disperse through landscapes, which may be particularly important in fragmented habitats and crucial for long-term persistence in changing environments. Landscape genetic approaches explore the interactions between landscape features and gene flow and can clarify how organisms move among suitable habitats, but have suffered from methodological uncertainties. We used a landscape genetic approach to determine how landscape and climate-related features influence gene flow for American pikas (Ochotona princeps) in Crater Lake National Park. Pikas are heat intolerant and restricted to cool microclimates; thus, range contractions have been predicted as climate changes. We evaluated the correlation between landscape variables and genetic distance using partial Mantel tests in a causal modelling framework, and used spatially explicit simulations to evaluate methods of model optimization including a novel approach based on relative support and reciprocal causal modelling. We found that gene flow was primarily restricted by topographic relief, water and west-facing aspects, suggesting that physical restrictions related to small body size and mode of locomotion, as well as exposure to relatively high temperatures, limit pika dispersal in this alpine habitat. Our model optimization successfully identified landscape features influencing resistance in the simulated data for this landscape, but underestimated the magnitude of resistance. This is the first landscape genetic study to address the fundamental question of what limits dispersal and gene flow in the American pika.Keywords: Landscape genetics, CDPOP, Mantel tests, Causal modellin
Multidrug-resistant and methicillin-resistant Staphylococcus aureus (MRSA) in hog slaughter and processing plant workers and their community in North Carolina (USA)
Background: Use of antimicrobials in industrial food-animal production is associated with the presence of antimicrobial resistant Staphylococcus aureus among animals and humans. Hog slaughter/processing plants process large numbers of animals from industrial animal operations, and are environments conducive to the exchange of bacteria between animals and workers.
Objectives: To compare the prevalence of methicillin-resistant S. aureus (MRSA) and multidrug resistant S. aureus(MDRSA) carriage between processing plant workers, their household members, and community residents.
Methods: We conducted a cross-sectional study of hog slaughter/processing plant workers, their household members, and community residents in North Carolina. Participants responded to a questionnaire and provided a nasal swab. Swabs were tested for S. aureus, and isolates tested for antimicrobial susceptibility and subjected to multilocus sequence typing.
Results: The prevalence of S. aureus was 21.6%, 30.2%, and 22.5% among 162 workers, 63 household members, and 111 community residents, respectively. The overall prevalence of MRSA and MDRSA tested by disk diffusion was 4.8% and 6.9%, respectively. The adjusted prevalence of MDRSA among workers was 1.96 times (95% CI: 0.71, 5.45) the prevalence in community residents. The adjusted average number of antimicrobial classes to which S. aureus isolates from workers were resistant was 2.54 times (95% CI: 1.16, 5.56) the number among isolates from community residents. One MRSA isolate and two MDRSA isolates from workers were identified as sequence type 398, a type associated with exposure to livestock.
Conclusions: Although the prevalence of S. aureus and MRSA was similar in hog slaughter/processing plant workers and their household and community members, S. aureus isolates from workers were resistant to a greater number of antimicrobial classes. These findings may be related to the non-therapeutic use of antimicrobials in food-animal production
Clinicopathological and molecular characterisation of “multiple classifier” endometrial carcinomas
Endometrial carcinoma (EC) molecular classification based on four molecular subclasses identified in The Cancer Genome Atlas (TCGA) has gained relevance in recent years due to its prognostic utility and potential to predict benefit from adjuvant treatment. While most ECs can be classified based on a single classifier (POLE exonuclease domain mutations - POLEmut, MMR deficiency - MMRd, p53 abnormal - p53abn), a small but clinically relevant group of tumours harbour more than one molecular classifying feature and are referred to as 'multiple-classifier' ECs. We aimed to describe the clinicopathological and molecular features of multiple-classifier ECs with abnormal p53 (p53abn). Within a cohort of 3518 molecularly profiled ECs, 107 (3%) tumours displayed p53abn in addition to another classifier(s), including 64 with MMRd (MMRd-p53abn), 31 with POLEmut (POLEmut-p53abn), and 12 with all three aberrations (MMRd-POLEmut-p53abn). MMRd-p53abn ECs and POLEmut-p53abn ECs were mostly grade 3 endometrioid ECs, early stage, and frequently showed morphological features characteristic of MMRd or POLEmut ECs. 18/28 (60%) MMRd-p53abn ECs and 7/15 (46.7%) POLEmut-p53abn ECs showed subclonal p53 overexpression, suggesting that TP53 mutation was a secondary event acquired during tumour progression. Hierarchical clustering of TCGA ECs by single nucleotide variant (SNV) type and somatic copy number alterations (SCNAs) revealed that MMRd-p53abn tumours mostly clustered with single-classifier MMRd tumours (20/23) rather than single-classifier p53abn tumours (3/23), while POLEmut-p53abn tumours mostly clustered with single-classifier POLEmut tumours (12/13) and seldom with single-classifier p53abn tumours (1/13) (both p ≤ 0.001, chi-squared test). Finally, the clinical outcome of patients with MMRd-p53abn and POLEmut-p53abn ECs [stage I 5-year recurrence-free survival (RFS) of 92.2% and 94.1%, respectively] was significantly different from single-classifier p53abn EC (stage I RFS 70.8%, p = 0.024 and p = 0.050, respectively). Our results support the classification of MMRd-p53abn EC as MMRd and POLEmut-p53abn EC as POLEmut. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland
Recommended from our members
Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach
Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species’ niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species’ niches, resulting in predictions that are generally limited to climate-occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place-based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence–absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981–2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local-scale differences in the realized niche of the American pika. This variation resulted in diverse and – in some cases – highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place-based approach to species distribution modeling that includes fine-scale factors when assessing current and future climate impacts on species’ distributions, especially when predictions are intended to manage and conserve species of concern within individual protected areas.Keywords: genetic neighborhood, species distribution modeling, functional connectivity, Random Forest, realized niche, American pika, Ochotona princeps, National Park
The Journalists of the Future meet Entrepreneurial Journalism
Journalism is undergoing a strong restructuring of its labour market due to the consequences of
the economic crisis and the technological innovations. Discussions on the search for new
formulas for job creation are centred on the emergence of entrepreneurial journalism. Spain is a
paradigmatic example of this phenomenon because between 2008 and 2014, 454 news media
outlets were created. The rise of entrepreneurial journalism raises many questions and
challenges that affect all areas of journalism. One is their introduction in journalism education
and the views of journalism students. The aim of this article is to analyse the perceptions
regarding entrepreneurship held by those who will be future journalists and who are now
receiving their education in the classroom. Our goal is to find out what knowledge journalism
students have about entrepreneurship and the skills that are deemed essential. We evaluate the
willingness of journalism students to develop their own business project and the major barriers
and obstacles. The methodology uses a quantitative approach based on surveys in Spain
(N=184). The results suggest an increase of the willingness in students to engage in
entrepreneurship. However, students also have a negative and disenchanted view of journalism
as they progress in their studies.This research was supported by the Universitat Jaume I de Castelló [grant number PI11A2013–
12]
The Main Belt Comets and ice in the Solar System
We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies
Early human impacts and ecosystem reorganization in southern-central Africa
Modern Homo sapiens engage in substantial ecosystem modification, but it is difficult to detect the origins or early consequences of these behaviors. Archaeological, geochronological, geomorphological, and paleoenvironmental data from northern Malawi document a changing relationship between forager presence, ecosystem organization, and alluvial fan formation in the Late Pleistocene. Dense concentrations of Middle Stone Age artifacts and alluvial fan systems formed after ca. 92 thousand years ago, within a paleoecological context with no analog in the preceding half-million-year record. Archaeological data and principal coordinates analysis indicate that early anthropogenic fire relaxed seasonal constraints on ignitions, influencing vegetation composition and erosion. This operated in tandem with climate-driven changes in precipitation to culminate in an ecological transition to an early, pre-agricultural anthropogenic landscape.info:eu-repo/semantics/publishedVersio
- …