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Abstract

Climate change is arguably the greatest challenge to conservation of our time. Most

vulnerability assessments rely on past and current species distributions to predict

future persistence but ignore species’ abilities to disperse through landscapes, which

may be particularly important in fragmented habitats and crucial for long-term persis-

tence in changing environments. Landscape genetic approaches explore the interactions

between landscape features and gene flow and can clarify how organisms move among

suitable habitats, but have suffered from methodological uncertainties. We used a

landscape genetic approach to determine how landscape and climate-related features

influence gene flow for American pikas (Ochotona princeps) in Crater Lake National

Park. Pikas are heat intolerant and restricted to cool microclimates; thus, range contrac-

tions have been predicted as climate changes. We evaluated the correlation between

landscape variables and genetic distance using partial Mantel tests in a causal model-

ling framework, and used spatially explicit simulations to evaluate methods of model

optimization including a novel approach based on relative support and reciprocal cau-

sal modelling. We found that gene flow was primarily restricted by topographic relief,

water and west-facing aspects, suggesting that physical restrictions related to small

body size and mode of locomotion, as well as exposure to relatively high temperatures,

limit pika dispersal in this alpine habitat. Our model optimization successfully identi-

fied landscape features influencing resistance in the simulated data for this landscape,

but underestimated the magnitude of resistance. This is the first landscape genetic

study to address the fundamental question of what limits dispersal and gene flow in

the American pika.
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Introduction

Most climate niche models suggest that many species

will shift their ranges poleward or upward in elevation

as a result of increases in temperature (Guralnick 2007).

According to this hypothesis, high elevation species are

particularly at risk because they already exist at or near

their upper elevational limits. Such broad-scale projec-

tions are useful, but may fail to give accurate predic-

tions when interpreted at a smaller geographical scale,

that is, what conditions individuals within a single

population might experience (Ashcroft et al. 2009;

Suggitt et al. 2011). These models rarely take into

account the effects of fine-scale topography on microcli-

mate, which are particularly apparent in montane eco-

systems (Luoto & Heikkinen 2008; Pepin et al. 2011;

Suggitt et al. 2011). Moreover, they do not consider dis-

persal and the implications of local habitat fragmenta-

tion (Pearson & Dawson 2003; Hampe 2004; Brooker

et al. 2007), although neither is well understood for

many species. The ability of organisms to move among

habitat patches, in addition to changes in the distri-

bution of available habitat, has major implications for

long-term viability (Fahrig & Merriam 1985;

M€onkk€onen & Reunanen 1999; Pearson & Dawson
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2003). In consequence, to aid both more realistic model-

ling of species distribution change and conservation of

species in fragmented habitats, dispersal and gene flow

should be described and modelled for species identified

as potentially vulnerable to climate change.

One species that has gained recent attention because

of potential risk from climate change is the American

pika (Ochotona princeps). American pikas are considered

montane specialists, but are found at low elevations in

the northern portion of their range (Smith & Weston

1990; Manning & Hagar 2011). American pikas are sen-

sitive to high temperatures when not allowed to

behaviourally thermoregulate (Smith 1974b; Smith &

Weston 1990), which is reflected in trends in occurrence

along elevational and latitudinal gradients (Hafner

1993; Galbreath et al. 2009). Broad-scale climate niche

models suggest the American pika will experience a

substantial range contraction as a result of increased

temperatures and decreased precipitation (Galbreath

et al. 2009). American pikas have already experienced

range contractions upward in elevation (Moritz et al.

2008) and local extinctions as a result of recent climate

change (Beever et al. 2003, 2010, 2011; Wilkening et al.

2011), but these trends are not consistent across the spe-

cies’ range or even within a particular biogeographical

region (Millar & Westfall 2010; Collins & Bauman 2012).

A recent study of American pikas in eight National

Parks representing a gradient of elevations and habitat

types found that pikas’ relationship with climate varied

from site to site: low pika occupancy was correlated

with hot and dry conditions in some parks, but in other

parks, with cold and wet conditions (Jeffress et al.

2013). That study underscores the importance of repli-

cated fine-scale investigations to avoid missing complex

relationships.

However, dispersal, gene flow and the effect of land-

scape and climate on those processes are still poorly

understood for this species. Estimates of maximum dis-

persal distance range from a few hundred metres

(Smith 1974a) to 20 km (Hafner & Sullivan 1995), but

many estimates suggest little or no gene flow between

populations >10 km apart (Peacock 1997; Henry et al.

2012). Previous studies suggest distance, exposure to

high temperatures and topography limit dispersal in pi-

kas, as evidenced by direct observation of marked indi-

viduals within a single metapopulation (Smith 1974a)

and population-based genetic analyses (Henry et al.

2012). However, there has been no systematic, individ-

ual-based analysis of pika dispersal distance or gene

flow over a large landscape.

In this study, we conduct the first fine-scale, individ-

ual-based genetic analysis that addresses the effect of

landscape and climate on dispersal and gene flow for

American pikas. We use a landscape genetics approach

to assess the correlation between gene flow and

landscape variables for American pikas in Crater Lake

National Park (CRLA), Oregon, to identify factors that

impede or facilitate dispersal for pikas at fine scales.

Landscape genetics provides a framework for evaluating

hypotheses relating landscape features to patterns of

genetic structure (Storfer et al. 2007), including address-

ing questions about barriers to dispersal, population iso-

lation and ultimately population vulnerability (Manel

et al. 2003; Balkenhol & Waits 2009; Storfer et al. 2010;

Manel & Holderegger 2013). While there are many

approaches in landscape genetics (Manel et al. 2003; Ma-

nel & Holderegger 2013), the predominant methodology

involves relating matrices of pairwise population or indi-

vidual genetic distances with cost distances derived

from either a least cost path (e.g. Epps et al. 2007) or cir-

cuit-theoretic approach (McRae 2006; Cushman et al.

2013b; Manel & Holderegger 2013). Here, we use partial

Mantel tests in a model optimization framework based

on the approach proposed by Cushman et al. (2006) and

as refined by Shirk et al. (2010), Wasserman et al. (2010)

and Cushman et al. (2013b).

As is often the case with relatively young and

expanding areas of research, methodologies are con-

stantly being questioned and refined. Recently, there

has been controversy over the use of Mantel tests in

landscape genetics (Balkenhol et al. 2009; Guillot &

Rousset 2011, 2013; Graves 2012; Graves et al. 2013), but

a preferable alternative has yet to be identified that

does not also suffer drawbacks. There is no one-size-

fits-all approach, and the most appropriate methodol-

ogy will depend on the research question and

landscape under investigation (Balkenhol et al. 2009).

Cushman et al. (2013b) evaluated the performance of

causal modelling with Mantel and partial Mantel tests

using a series of simulations. They concluded that par-

tial Mantel tests have a very low type II error rate, but

high type I error rate especially among highly corre-

lated alternate landscape hypotheses. We use a more

robust modelling framework, proposed by Cushman

et al. (2013b), that is based on the relative support (RS)

of each candidate model and includes a reciprocal cau-

sal modelling step in our model optimization process.

Simultaneously competing alternate models against

each other rather than against distance alone reduces

the risk of type I error and spurious correlations. We

followed with a simulation study to evaluate our frame-

work. The objectives of this study were to (i) identify

the relationship between landscape and gene flow for

American pikas in CRLA; (ii) assess the ability of our

model optimization with partial Mantel tests approach

to correctly identify the true underlying landscape

model; and (iii) make recommendations for the use of

partial Mantel tests in landscape genetics.
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Methods

Study area

The study area included approximately 460 km2 within

CRLA in the Cascade Range of southern Oregon. Poten-

tial pika habitat within CRLA is characterized by talus

(Smith & Weston 1990), which occurs primarily around

the rim of the crater and on mountain peaks and ridges

throughout the park (Fig. 1). The crater resulting from

the eruption of the Mt. Mazama volcano is the domi-

nant feature on the landscape. The elevation drops

approximately 300 m from the rim of the crater to the

lake surface. In addition to the crater itself, ridges and

ravines represent the most topographically complex

areas within the park (Fig. S1, Supporting Information).

Streams are also an important feature on the landscape

with the majority of the perennial streams located in

the southern half of the park (Fig. S2, Supporting Infor-

mation). The most abundant vegetation type within the

park is evergreen forest (Fig. S3, Supporting Informa-

tion), and elevation ranges from approximately 1200 to

2721 m.

Sample collection

We collected faecal samples for genetic analysis

between June 2010 and September 2011 using random,

targeted and opportunistic sampling approaches. Ran-

dom sampling occurred in conjunction with pika occu-

pancy surveys conducted as part of a related study

(Jeffress et al. 2013). A generalized random tessellation-

stratified algorithm (Stevens & Olsen 2004) was used to

generate spatially balanced survey sites within potential

0 2.5 5 7.5 101.25
Km

Fecal Samples

Potential Habitat

Circuit Analysis Frame

Park Boundary

Oregon

Fig. 1 Map of study area within Crater

Lake NP showing sample localities (black

X’s), potential pika habitat (red) and the

circuit analysis frame (black outline).
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pika habitat. A more detailed description of the sam-

pling design and potential habitat map is provided in

Jeffress et al. (2013). Targeted sampling involved

exhaustively searching areas identified as potential hab-

itat with the goal of obtaining 10–20 samples within a

relatively discreet habitat patch. Pikas are highly

territorial, so to avoid sampling individuals multiple

times we collected samples at >50 m apart, slightly

larger than the average territory size. Opportunistic

sampling occurred while in transit between survey

sites. To increase genotyping success and reduce risk of

contamination between individuals, we attempted to

collect samples representing a single defecation event

such that they were (i) recently deposited, based on

colour and adherence to the substrate; (ii) clumped

together and similar in appearance; and (iii) not

contacting older faecal pellets.

DNA extraction and genotyping

We extracted DNA from faecal samples using a modi-

fied AquaGenomic Stool and Soil DNA extraction proto-

col (MultiTarget Pharmaceuticals LLC). We genotyped

individuals at 24 microsatellite loci in four multiplex

polymerase chain reactions (PCR) using a Qiagen Multi-

plex PCR kit (Qiagen) according to the manufacturer’s

specifications (Table S1, Supporting Information). We

visualized PCR products using an ABI 3730 capillary

sequencer (Applied Biosystems) and GS500 Liz size

standard (Applied Biosystems), then scored genotypes

using GENEMAPPER V4.1 (Applied Biosystems). We ini-

tially amplified each sample three times for each multi-

plex PCR. Each allele was considered confirmed if it

was typed at least twice in independent amplifications.

If an allele was seen only once during the initial three

replicates, we repeated PCR up to a total of seven times

to construct consensus genotypes. We identified samples

with more than two confirmed microsatellite peaks at

any locus as contaminated and removed them from fur-

ther analysis. We screened for duplicate individuals first

by using CERVUS 3.0 (Kalinowski et al. 2007) to identify

matching genotypes, allowing fuzzy matching with up

to six mismatching loci. We then used GIMLET (Valiere

2002) to calculate the probability of identity for a

full-sibling relationship (P(ID)sib) (Waits et al. 2001) for

each of the matching genotypes identified in CERVUS. We

identified duplicate individuals if P(ID)sib < 10�3 (Epps

et al. 2005) and removed all but one genotype for

each of the sets of duplicates. We tested for linkage

disequilibrium and significant deviations from expected

Hardy–Weinberg genotype frequencies using GENEPOP

(Raymond & Rousset 1995). Finally, we removed

individuals with incomplete genotypes from further

analysis.

Genetic distance

We calculated pairwise genetic distance among individ-

uals using a principal components analysis (PCA)-based

metric (Shirk et al. 2010). We constructed a matrix of

multilocus genotypes coded such that there is a column

for each allele in the population and cells contain the

number of occurrences of that allele (0, 1 or 2) for each

individual, represented by rows in the matrix. We gen-

erated a genetic distance matrix based on the distance

between individuals along the first two eigenvectors

using the Euclidean distance function in the ECODIST

package in R 2.13.1. For comparison, we also calculated

Bray–Curtis per cent dissimilarity pairwise distances

(Legendre & Legendre 1998) using the ECODIST package

(Goslee & Urban 2007) in R 2.13.1 (R Development Core

Team 2011). This metric is equal to one minus the

proportion of shared alleles, another commonly used

metric. The results for the Bray–Curtis per cent

dissimilarity were similar to the PCA distance (Table

S2, Supporting Information).

Univariate resistance model functions

We evaluated the hypotheses that gene flow in pikas is

limited by temperature, exposure to predators and

topographical limitations to dispersal. To do so, we

modelled landscape resistance as a function of eleva-

tion, aspect, land cover, water and topographic com-

plexity (TC). To avoid confounding effects of Crater

Lake itself in our analyses, we removed it from the

landscape by replacing the corresponding pixels with

‘nodata’ in the GIS and forced movement paths around

the lake. We modelled resistance as a function of eleva-

tion, according to the hypothesis that elevation is a

proxy for temperature and that there is an optimal ele-

vation around which resistance increases as elevation

increases or decreases. To accomplish this, we reclassi-

fied a digital elevation model (DEM) according to an

inverse Gaussian function (Equation S1, Supporting

Information). We evaluated five maximum resistance

(Rmax) values (2, 10, 100, 500 and 1000), seven optimum

elevations (Eopt) ranging from 1950 to 2550 m in 100-m

increments and three standard deviations (ESD) for a

total of 105 candidate models.

We modelled resistance as a function of topographi-

cal aspect according to the hypothesis that there is an

optimal aspect such that increasing or decreasing aspect

results in an increase in resistance. McCune and Keon

(2002) proposed an index of heat load such that north-

east aspects (45°) represent the coolest slope with a

value of zero and southwest aspects (225°) represent

the warmest slope with a value of 1. To test whether

aspect, as a proxy for temperature, influences gene

© 2014 John Wiley & Sons Ltd
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flow, we modified the heat load index to assess (i) the

presence of an optimum aspect and (ii) the range of tol-

erance about the optimum aspect by including an expo-

nent variable, x (Equation S2, Supporting Information).

As the exponent increases so does the contrast (width

of tolerance), such that there are fewer pixels with inter-

mediate resistance values. Flat areas, pixels with a value

of �1 on the untransformed aspect raster, were reclassi-

fied as Rmax/2. We tested aspects in 45° increments

from 0 to 315° with five values of x (0.5, 1, 2, 4 and 10)

and the same Rmax values as for elevation, for a total of

200 candidate models.

We hypothesized that resistance increases as TC

increases because of greater energetic expenditure for

movement across complex terrain due to the pika’s

small body size and mode of locomotion. Using the

Surface Relief Ratio (SRR) tool in the Geomorphometry

and Gradients Metrics toolbox for ARCGIS 10.0 (Evans &

Oakleaf 2012), we calculated the SRR for each cell in a

DEM. SRR is an index of surface complexity ranging

from zero to one calculated within a specified radius.

We calculated SRR using three radii (10, 20 and 50) and

reclassified the resulting SRR raster according to a

power function such that resistance increased towards

Rmax according to a relationship governed by x (Equa-

tion S3, Supporting Information). We identified the

most appropriate radius, then tested the same values of

x and Rmax as for aspect for a total of 25 candidate

models.

We modelled resistance as a function of land cover

according to two hypotheses: potential habitat poses

less resistance than nonhabitat and forested areas pose

less resistance than open areas, but more resistance than

potential habitat. These predictions stem from the

hypothesis that predation risk and heat exposure

increase as cover decreases. Using the potential habitat

map described in Jeffress et al. (2013), we assigned a

resistance value of 1 to potential habitat and tested

seven values of Rmax for nonhabitat (2, 10, 50, 100, 250,

500 and 1000). Next, we reclassified a land cover raster

(NLCD 2006 Land Cover, U. S. Geological Survey) into

four categories according to cover type: forested,

shrub/grassland, open/barren and water. We combined

the potential habitat and land cover rasters such that

the new raster contained all five land cover categories.

We then ranked each cover class according to hypothe-

sized relative resistance with potential habitat: the

lowest rank followed by forested, shrub/grassland,

open/barren and water as a barrier. We reclassified the

resulting categorical rank raster according to the func-

tion R = Rankx, rescaled such that RPH = R1 = 1 and

R4 = Rmax. This scaling allows us to hold potential habi-

tat (RPH) and Rmax values constant while varying the

relative resistance of the other two land cover types

according to a relationship governed by x (Fig. S4, Sup-

porting Information). We tested the same five values of

x and six values of Rmax (2, 10, 100, 250, 500 and 1000),

for a total of 37 candidate models, including the dichot-

omous classification scheme.

Finally, we modelled resistance as a function of water

features including intermittent streams, perennial

streams and lakes. We used two classification schemes.

The first was a simple water–land dichotomy where we

assigned land a value of 1 and water an Rmax of 2, 10,

50, 100, 250, 500 or 1000. The second model included

the classification of perennial vs. intermittent streams

such that intermittent streams received a resistance

value of Rmax/2, except in the case of Rmax = 2 where

intermittent streams received a value of 1.5.

Univariate resistance model optimization

We evaluated our univariate resistance models by

assessing the correlation between pairwise genetic dis-

tance and pairwise resistance distance between individ-

ual sampling localities. We used CIRCUITSCAPE V.3.5.4

(McRae 2006) to model isolation by resistance and con-

struct a pairwise resistance matrix for each landscape

resistance surface. We calculated cumulative resistance

between point localities for each pair of genotyped indi-

viduals using an eight neighbour connection scheme.

All resistance models consisted of approximately 10 m

by 10 m pixels.

We assessed correlation between matrices using Man-

tel tests with the ECODIST package in R. We controlled for

the effect of distance alone by estimating resistance in

CIRCUITSCAPE with a raster of a constant value of 1 and

evaluated partial Mantel correlation after ‘partialling out’

the resulting cumulative resistance matrix (henceforth

referred to as model IBD). For each landscape variable,

we identified the top candidate model by a unimodal

peak of support in partial Mantel r values (Shirk et al.

2010). In the cases where there was a plateau rather than

a peak of support, we chose the model corresponding to

the point at which values began to plateau.

Next, we identified a set of candidate models

within a range of parameters similar to the top model

described above (e.g. �45° for aspect) and evaluated

that set of models against each other rather than just

against IBD. We quantified the RS of each model as

compared to each other model as:

RS1j2 ¼ ðGD�RD1jRD2Þ � ðGD�RD2jRD1Þ
where GD is the genetic distance matrix, RD1 is the

resistance distance matrix obtained from model 1, RD2

is the resistance distance matrix obtained from model 2,

and (GD ~ RD1|RD2) is the partial Mantel correlation

between GD and RD1 after partialling out RD2. RS1|2 in

© 2014 John Wiley & Sons Ltd
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the above equation represents the RS of model 1 as

compared to model 2. The model with positive RS in

every comparison represents the best candidate model

(Cushman et al. 2013b).

Multivariate resistance model construction and
optimization

We built our multivariate resistance surfaces by creating

rasters equal to the sum of the univariate model rasters

for each landscape variable. We used two methods for

our multivariate model optimization. The first is similar

to the methods in Shirk et al. (2010). We started with

the two landscape variables with the highest partial

Mantel correlation for GD ~ RD|IBD and then created

a series of bivariate models by varying the model

parameters for the second variable, while holding the

first constant. We repeated the methods used in the uni-

variate model optimization to identify the best sup-

ported model parameters for the second variable based

on the partial Mantel correlation GD ~ RD|IBD. Next,

we identified the optimum parameters for the first land-

scape variable while holding the second constant. We

then added additional landscape variables one at a

time. For each additional variable, we held the other

variables constant, optimized the new variable and then

repeated optimization for the variables previously

established in the model. If the best supported parame-

ter value for any previously established variable chan-

ged, we reoptimized the remaining variables. We

repeated the process until the best supported multivari-

ate model did not change.

The second multivariate model optimization proce-

dure was similar to the first, except we evaluated

models by their RS rather than GD ~ RD|IBD. We

started with the combination of the best models for

those landscape variables that had positive RS when

compared to IBD. We varied the model parameters for

one variable while holding the others constant. The

multivariate model with positive RS in every compari-

son represented the best candidate model. We

repeated this process until the variable parameters sta-

bilized.

In order to be accepted, the multivariate model

needed to pass the two causal modelling criteria

signifying that it was better than IBD: (i) GD ~ RD|IBD

must be significant and (ii) GD ~ IBD|RD must be non-

significant (Wasserman et al. 2010). Additionally, in

order for a landscape variable to be included in the

final multivariate model, it had to also pass the causal

modelling criteria with the reduced model. For exam-

ple, GD ~ (TC + W + A) | (TC + W) must be significant

and GD ~ (TC + W) | (TC + W + A) must be nonsignif-

icant in order for A to be included.

Simulation study

The purpose of the simulation study was to evaluate

the ability of the Mantel framework to correctly identify

the relationship between genetic distance and landscape

variables (e.g. Shirk et al. 2012) in this particular land-

scape and sampling scheme. To accomplish this, we cre-

ated a multivariate model including TC (high contrast

and high Rmax) and water (low Rmax) to represent the

‘true’ landscape resistance model. We simulated gene

flow among pikas in CRLA by first creating hypotheti-

cal individuals using ARCGIS and then simulating mating

and dispersal as a function of landscape resistance

using CDPOP (Landguth & Cushman 2010). CDPOP is a

spatially explicit, individual-based, landscape genetic

model that simulates mating and dispersal as a probabi-

listic function of movement cost among individual

localities and then reports individual genotypes through

each specified generation (Cushman et al. 2012).

If the Mantel framework is robust, then repeating the

model optimization process with the simulated geno-

types should result in the best supported model being

the same as, or very similar to, the model we used to

specify landscape resistance as input for CDPOP. In order

to conclude that the partial Mantel framework is effec-

tive, we determined that the best supported model

must (i) include all the variables included in our simu-

lated landscape (topography and water) and (ii) not

include any of the variables not included in our simu-

lated landscape. Additionally, the parameters of the

individual landscape variables in the best model should

not differ greatly from the simulated landscape.

We included sampling localities for all our genotyped

individuals, plus hypothetical individuals spaced

approximately 40 m apart within potential pika habitat

for a total of 3692 localities. Individual territory size

estimates for pikas result in 20–30 m spacing (Smith

1974b; Smith & Weston 1990); however, we were unable

to run simulations at that density due to computer

memory limitations. We calculated pairwise resistance

distance among all simulated individuals in CIRCUITSCAPE

using a resistance surface that included TC (high con-

trast and high Rmax) and water (low Rmax). We then

simulated mating and dispersal for 500 overlapping

generations with input parameters reflecting pika life

history: 50% birth mortality, equal sex ratio at birth,

50% juvenile survival and 30% adult survival up to age

5 years. We simulated a larger litter size than reported

for pikas (8 instead of 3 or 4) to reduce the number of

empty localities resulting from adult mortality. We

defined mating probability by a negative exponential

function such that mating was much more likely among

individuals with low cumulative resistance distance

between them. We set a maximum mating distance at

© 2014 John Wiley & Sons Ltd
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10% of the maximum pairwise resistance distance

observed. This corresponds to a mean mating distance

of approximately 110 m (SD � 90 m). Pikas typically

mate with individuals in neighbouring territories (Smith

& Ivins 1983, 1984); therefore, our simulated mating

parameters are realistic for pikas. Dispersal probability

was the same as mating, except that the maximum

dispersal distance was 20% of the maximum pair-

wise resistance distance observed, corresponding to a

mean dispersal distance of approximately 400 m

(SD � 675 m). Estimates for pika dispersal distance

range from tens of metres to a few kilometres (Smith &

Ivins 1983; Smith & Weston 1990; Hafner & Sullivan

1995; Peacock 1997). Previous studies found that almost

all juvenile pikas settle within 50 m of their natal home

range (Smith & Ivins 1983), long-distance migration

(>1 km) is rare (Peacock 1997), and under nonfavour-

able environmental conditions (i.e. high ambient tem-

perature), distances >300 m may pose a barrier to

dispersal (Smith 1974a). Therefore, our simulated dis-

persal parameters are realistic for pikas. Vacant territo-

ries (empty localities) occurred when an individual

died and was not replaced by a dispersing juvenile.

This could have been the result of demographic sto-

chasticity affecting the sex ratio within an area and/or

landscape resistance reducing mating and dispersal

ability. Vacant territories could be recolonized at any

subsequent generation; therefore, number and location

of vacant territories varied across generation and simu-

lation run.

Genotypes for the initial population were generated

at random for 21 loci with six alleles per locus. Muta-

tions were allowed at a rate of 0.0005 mutations per

generation according to a random mutation model.

Individual genotypes were recorded at generations 0,

100, 250 and 500. We repeated the simulation for a total

of 10 Monte Carlo (MC) replicates to account for sto-

chasticity. We calculated pairwise genetic distance for

each of the 10 MC replicates, using only those geno-

types that corresponded to real sampling localities, in

the same way as described for our real genetic data.

We evaluated the correlation between simulated

genetic distance and each of the univariate landscape

resistance models evaluated for our real data set, using

the methods described above. For each of the five land-

scape variables, we ranked the univariate models accord-

ing to partial Mantel correlation after partialling out the

IBD model within each MC replicate, and then according

to average rank across all 10 MC replicates. We used the

average rank to identify a best supported model, repre-

senting a unimodal peak or plateau of support where

possible, for each landscape variable. We repeated the

univariate optimization and multivariate model construc-

tion and optimization based on RS to identify a best

supported model as employed for the real data. How-

ever, we ranked models according to the number of

positive RS values and identified the best model as the

one with highest average rank across all MC replicates.

Results

Sample collection and genotyping

We collected 369 faecal samples for genetic analysis

between June 2010 and September 2011 through a com-

bination of random (n = 116), targeted (n = 237) and

opportunistic (n = 16) sampling schemes. We extracted

DNA from 210 faecal samples chosen for relative fresh-

ness and spatial distribution. Four loci were excluded

Table 1 Best univariate models of landscape resistance for

pikas in Crater Lake NP, for each of the five variables, based

on partial Mantel correlation after partialling out the IBD

model. Optimized parameter values, partial Mantel correlation

and significance of partial Mantel test are shown

Landscape

variable

Optimized parameter

values*

Partial

Mantel r P

Topographic

complexity

x = 2, Rmax = 3 0.15 0.01

Water Classified, Rmax = 10 0.14 0.03

Aspect 90°, x = 4, Rmax = 3 0.13 0.02

Elevation 1950 m, SD = 300,

Rmax = 3

0.09 0.09

Land cover x = 2, Rmax = 2 0.08 0.10

*Optimized values include equation parameters for contrast (x or

SD; the shape of the relationship) and Rmax (the magnitude of

the relationship); see Equations S1–S3 (Supporting Information).

Table 2 Best univariate models of landscape resistance for

pikas in Crater Lake NP, for each of the five variables based

on relative support (RS). Only the RS as compared to IBD is

shown. A model was supported if it passed the causal model-

ling criteria with IBD

Landscape

variable

Optimized

parameter values* RSi|IBD Supported?

Topographic

complexity

x = 4, Rmax = 1001 0.21 Yes

Water Classified, Rmax = 100 0.12 Yes

Aspect 90°, x = 4, Rmax = 11 0.10 Yes

Elevation 1950 m, SD = 300,

Rmax = 3

0.12 No

Land cover x = 2, Rmax = 2 0.15 No

*Optimized values include equation parameters for contrast (x or

SD; the shape of the relationship) and Rmax (the magnitude of

the relationship); see Equations S1–S3 (Supporting Information).
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for failure to amplify or lacking variability in this popu-

lation (P7, OCP03, OCP16 and OCP17, Table S1, Sup-

porting Information). An additional five loci exhibited

heterozygote deficit within CRLA, but not consistently

in other populations at study sites not included in this

study (n = 8, Table S1, Supporting Information); there-

fore, we retained them. Two comparisons of 180 exhib-

ited significant linkage disequilibrium after correction

for multiple comparisons. However, no comparisons

exhibited significant linkage disequilibrium across mul-

tiple study sites. After removing duplicate individuals

(n = 28), contaminated samples (n = 39) and samples

that failed to amplify at one or more loci (n = 37), we

had a total of 106 individuals genotyped at 20 loci

(Fig. 1). The average number of alleles per locus was

5.7. A description of the population structure within

CRLA is presented in the Fig. S5 (Supporting Informa-

tion). We did not find significant evidence that our data

violated the assumption of linearity when genetic dis-

tance was compared to resistance distance.

Univariate model optimization

Topographic complexity had the strongest correlation

with genetic distance, after partialling out the IBD

model, followed by water, aspect, elevation and land

cover (Table 1). The optimum parameter values for con-

trast (x) were low to medium and the magnitudes of

resistance values (Rmax) were either low or lowest of

those evaluated for all landscape variables. The optimum

aspect was east facing. The partial Mantel correlation

was not significant for either elevation or land cover.

Similarly, the landscape variable with the greatest RS

when compared to IBD was TC, followed by land

cover, water, elevation and aspect, respectively

(Table 2). However, only TC, water and aspect passed

the causal modelling criteria with IBD. The Rmax values

were greater for the three supported variables deter-

mined using RS than with the optimization based on

partial Mantel correlation. Additionally, the degree of

contrast was greater for TC.

Multivariate model optimization

The best multivariate model based on optimization with

partial Mantel correlation after partialling out the IBD

model included only TC and water. This model

included the best model from the univariate optimiza-

tion for TC, but a greater magnitude of resistance for

the water component (Table 3, model 1). Equally well

supported was a model that included TC, with medium

contrast and highest resistance, and water with lowest

resistance (Table 3, model 2).

The best multivariate model from the optimization

based on RS included TC, water and aspect (Table 3,

model 3). Including aspect only slightly improved the

RS over the same model without aspect (RS = 0.05). The

partial Mantel correlation after partialling out the

reduced model was nearly significant (P = 0.07), while

the converse was nonsignificant (P = 0.26), suggesting

that including aspect improved the model. When we

compared models 1, 2 and 3 against each other and IBD

using RS, model 3 performed best (Table 4). The RS for

model 3 compared to models 1 and 2 was only slightly

greater than zero, but it still passed the causal model-

ling criteria for significance.

Simulation study

After 500 generations, the number of individuals ranged

from 3495 to 3502 for the 10 independent simulations,

representing approximately 95% of the original popula-

tion. The correlation between genetic distance and resis-

tance distance increased rapidly and then began to

asymptote around 250 generations, indicating stabiliza-

tion of the relationship between landscape resistance

and genetic structure (Fig. S6, Supporting Information).

After partialling out the IBD model, of the top-ranked

models for each landscape variable TC had the strong-

est Mantel correlation with genetic distance, followed

by aspect, elevation, water and land cover (Table 5).

When we evaluated the RS for the group of top candi-

date models within each landscape variable against

each other and IBD, the top models for TC and water

Table 3 Results of the multivariate model optimization for pikas in Crater Lake NP. Models 1 and 2 are the best models based on

partial Mantel correlation after partialling out IBD. Model 3 is the best model from the optimization based on relative support.

Optimized model parameters*, partial Mantel correlation and significance of partial Mantel test are shown

Model Topographic complexity Water Aspect Partial Mantel r P

(1) T + W x = 2, Rmax = 3 Classified, Rmax = 100 — 0.22 0.00

(2) T + W x = 4, Rmax = 1001 Unclassified, Rmax = 2 — 0.22 0.00

(3) T + W + A x = 4, Rmax = 501 Unclassified, Rmax = 100 90°, x = 4, Rmax = 100 0.13 0.02

*Optimized values include equation parameters for contrast (x or SD; the shape of the relationship) and Rmax (the magnitude of the

relationship); see Equations S1–S3 (Supporting Information).

© 2014 John Wiley & Sons Ltd

850 J . A . CASTILLO ET AL.



were the only two variables that consistently performed

better than distance alone (Table 6). The top model for

TC included a higher Rmax than the top model based on

partial Mantel correlation alone. The top model for

water was the same as the top model based on partial

Mantel correlation alone. The best model for aspect,

representing highest contrast and lowest Rmax and

therefore the model most closely resembling IBD, per-

formed better than IBD in four MC replicates only. The

top model for elevation, representing mid-elevation

with highest contrast (lowest standard deviation) and

lowest Rmax, performed better than IBD 50% of the

time. Only those elevation models with lowest resis-

tance and an optimum elevation of 2150 or 2250 m per-

formed better than IBD. The IBD model performed

better than land cover 100% of the time.

The optimized multivariate model based on RS

included TC and water only. Including elevation in the

model produced inconsistent results across MC repli-

cates. Including elevation improved the RS in 90% of

MC replicates, but no single model (of the six evalu-

ated) was the best supported model in more than 20%

of MC replicates. Likewise, none of the models includ-

ing elevation passed the causal modelling criteria with

the reduced model more than 50% of the time.

Elevation did not consistently improve the model and

was therefore not included. The optimum Rmax for TC

was high (501), higher than the best supported univari-

ate model. There was no significant difference between

the model with Rmax = 2 and Rmax = 10 for water

(P ≥ 0.12 and RS ≤ 0.09 across all ten MC replicates).

The model used as the input landscape for the simu-

lated population included TC, with highest contrast and

highest Rmax, and water with no stream-type classifica-

tion and Rmax = 10. The final optimized multivariate

model identified by analysing the simulated data

included both variables, passed the causal modelling

criteria with IBD in 90% of the MC replicates and

passed the causal modelling criteria with the reduced

model in 100% of the MC replicates. Therefore, we were

able to consistently identify the correct landscape vari-

ables (Fig. 2). We were also able to identify the correct

degree of contrast for TC, but the magnitude of resis-

tance was underestimated. The true parameters for

water did not include a classification of stream type,

whereas our optimization did, and we were not able to

distinguish between Rmax = 10 and Rmax = 2. The opti-

mized multivariate model had higher RS than the true

model and passed the causal modelling criteria in 100%

of MC replicates.

Discussion

Model optimization and reciprocal causal modelling

The results of the univariate model optimization sug-

gested that TC was the landscape factor most strongly

correlated with gene flow for pikas in CRLA, followed

by water, aspect, elevation and land cover, with the lat-

ter two variables not significantly influencing gene flow.

We saw a similar pattern for variable support in the

within-variable optimization based on RS, but the mag-

nitude of resistance was greater for all three significant

variables in the latter method. This was also the case

Table 4 Matrix of relative support of the model in the row as

compared to the model in the column. Model numbers refer to

Table 3

Model 1 2 3 IBD

1 — 0.01 (0.13) �0.06 (0.19) 0.22 (0.02)

2 �0.01 (0.15) — �0.08 (0.34) 0.21 (0.01)

3 0.06 (0.03) 0.08 (0.04) — 0.22 (0.00)

IBD �0.22 (0.87) �0.21 (0.88) �0.22 (0.81) —

Numbers in parentheses are P-values for the correlation

between genetic distance and the model in the row partialling

out the model in the column.

Table 5 Best univariate models of landscape resistance for pikas in Crater Lake NP, for each variable from the simulated genotypes,

based on average rank across Monte Carlo (MC) replicates for partial Mantel correlation, partialling out IBD. Optimized parameter

values and summary statistics for the partial Mantel correlation across all ten MC replicates are shown

Landscape variable Optimized parameter values*

Partial Mantel r

Minimum Maximum Mean SD

Topographic complexity x = 10, Rmax = 3 0.24 0.46 0.39 0.08

Aspect 45°, x = 10, Rmax = 101 0.11 0.29 0.23 0.06

Elevation 2250 m, SD = 200, Rmax = 1001 0.13 0.33 0.21 0.07

Water Classified, Rmax = 2 0.01 0.07 0.03 0.02

Land cover Habitat vs. nonhabitat, Rmax = 250 �0.22 0.08 �0.09 0.10

*Optimized values include equation parameters for contrast (x or SD; the shape of the relationship) and Rmax (the magnitude of the

relationship); see Equations S1–S3 (Supporting Information).
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with TC in the simulation study, suggesting that while

examining the partial Mantel correlation after partial-

ling out IBD may correctly identify the significant land-

scape variables, it may underestimate the magnitude of

the relationship.

Simultaneously competing models against each other

through reciprocal causal modelling also improved our

ability to identify the best multivariate model. We

demonstrated through the simulation study that (i) we

could identify the correct landscape variables influenc-

ing gene flow and (ii) evaluating RS resulted in within-

variable parameter estimates being closer to truth than

when only evaluating the correlation after partialling

out the IBD model. Without reciprocal causal model-

ling, we would not have identified aspect as an impor-

tant landscape variable. However, neither model

optimization method is effective at differentiating

among highly similar models, such as models 1 and 2

(Table 3). In CRLA, TC is often greatest in ravines with

streams at the bottom. Therefore, with either model 1 or

2, the relative cost of crossing these features is similar

whether resistance is high for topography and low for

water, or the converse scenario.

The best supported model suggests that dispersal for

pikas in CRLA is limited primarily by physical con-

straints, with topographically complex areas such as

cliffs and ridges posing resistance to movement and

streams potentially posing barriers. Aspect also was

important, with west-facing slopes posing more resis-

tance to movement than east-facing slopes, but not as

influential as either TC or water features.

Simulation study

This simulation study supports the reciprocal causal

modelling with partial Mantel tests approach as an

effective means to identify the relationship between

gene flow and landscape variables. Despite the obvious

utility and recognized need for using simulation to vali-

date methods in landscape genetics (Epperson et al.

2010; Balkenhol & Landguth 2011; Cushman et al.

2013a; Shirk et al. 2012), very few studies have com-

bined empirical data with simulated population genetic

data to do so. Shirk et al. (2012) simulated gene flow

through the resistance landscape obtained from the

Simulated Pikas

Resistance
High :1002

Low : 2

0 2 41
Km

0 0.5 1
Km

(A) (B) Fig. 2 Map of simulated pikas within

Crater Lake NP showing landscape resis-

tance for the ‘true’ model (A) and the

model resulting from the optimization

framework (B). Inset boxes show a

zoomed-in portion for comparison of

streams.

Table 6 Best univariate models of landscape resistance for

pikas in Crater Lake NP, for each variable from the simulated

genotypes, based on relative support (RS). The column RSi|IBD
is the number of Monte Carlo (MC) replicates of ten where that

model had positive RS compared to IBD

Landscape variable Optimized parameter values*

RSi|

IBD

Topographic

complexity

x = 10, Rmax = 101 10

Water Classified, Rmax = 2 8

Aspect 45°, x = 10, Rmax = 3 4

Elevation 2250 m, SD = 100, Rmax = 3 5

Land cover Habitat vs. nonhabitat,

Rmax = 2

0

*Optimized values include equation parameters for contrast (x

or SD; the shape of the relationship) and Rmax (the magnitude of

the relationship); see Equations S1–S3 (Supporting Information).
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causal modelling with Mantel tests framework. They

simulated gene flow under isolation-by-barrier and

isolation-by-distance scenarios to evaluate whether the

observed pattern of genetic isolation from their

empirical data was best explained by the isolation-by-

resistance hypothesis. Rather than test whether we

could reproduce the observed genetic structure and

therefore infer the underlying process, we chose to test

whether our methods could identify the correct land-

scape resistance model in this particular scenario.

The optimized multivariate model from our simulated

genotypes was extremely close to the input landscape

parameters. The difference in classification for water and

inconsistent support for elevation are likely the result of

the distribution of individuals on the landscape. The

majority of the potential habitat, and therefore simulated

pikas, was concentrated around the rim of the crater

(Fig. 1). As a result, relatively few pairwise distances

involved crossing a stream, and of those, most were

perennial streams (Fig. S2, Supporting Information). Fur-

thermore, for the low magnitude of resistance, the differ-

ence between perennial and intermittent streams was

likely negligible (2 and 1.5, respectively) when compared

to an Rmax of 502. The ability to detect the effect of water

at all when the true Rmax values for water and TC were

10 and 1001, respectively, suggests that this method is

highly effective. Likewise, it is not surprising that eleva-

tion sometimes performed better than IBD. The only

models that sometimes had positive RS compared to

IBD had an Rmax of 3 and an optimum elevation of 2150

or 2250 m. Fifty-four per cent of the simulated pikas

were located between 2050 and 2450 m; therefore, most

pairwise distances were within this elevation range.

Very few comparisons within the mating and dispersal

distance involved crossing elevations with resistance

values >2.5; therefore, these models are very similar to

IBD. If pikas were evenly distributed throughout the

landscape rather than restricted to rocky habitat, eleva-

tion may not have performed as well against IBD. Spa-

tial distribution of sampling points is known to affect

performance and should be carefully considered when

interpreting results (Schwartz & McKelvey 2009).

We have demonstrated that model optimization with

partial Mantel tests and reciprocal causal modelling is

an effective tool for identifying the landscape variables

influencing gene flow. Simultaneously competing mod-

els against each other rather than just against distance

reduces type I error rates and spurious correlations

between similar alternate hypotheses. While optimiza-

tion with reciprocal causal modelling improved model

selection over the traditional method, the final model

still underestimated the magnitude of resistance. We

must therefore be careful in our interpretation of

the final model parameters. For example, we can

confidently state that topographically complex areas

pose much greater resistance than flat areas and that

steep cliffs likely act as barriers to dispersal. However,

we cannot conclude with certainty that topographically

complex features pose 500 times more resistance than

flat areas, despite the utility of such statements for con-

servation planning (Graves et al. 2013). Additionally, it

is important to understand the conditions that affect

our ability to detect these relationships and have the

potential to confound our results, such as sample distri-

bution and landscape configuration. In addition to false

associations, such as was the case occasionally with ele-

vation in this study, it is possible to incorrectly assume

landscape variables are not important if we do not

detect a significant relationship. Previous studies have

addressed these issues (e.g. Cushman et al. 2013a,b;

Graves et al. 2013; Prunier et al. 2013). We should con-

tinue to evaluate the effectiveness of our methods both

in hypothetical situations and in real landscapes to cor-

roborate findings and assess limitations.

Implications for pikas

Topographic complexity and water are the two land-

scape variables that most strongly limit gene flow for pi-

kas in CRLA, suggesting that pika dispersal is primarily

restricted by physical limitations. Slope aspect may also

have a significant effect, with west-facing aspects posing

greater resistance than east-facing aspects. West-facing

aspects typically experience higher temperatures than

east-facing aspects, and pikas are known to alter their

behaviour and become less active when ambient temper-

atures are high (Smith 1974a,b; Conner 1983). However,

other factors such as vegetation cover also may make

east-facing aspects more favourable. Land cover was not

strongly correlated with gene flow in CRLA. This is

somewhat surprising as land cover could influence both

predation risk and exposure to high ambient tempera-

tures. However, the ability of this approach to identify

landscape effects on gene flow is affected by the hetero-

geneity of the landscape variables (Short Bull et al. 2011;

Cushman et al. 2013a). More than 80% of the landscape

is evergreen forest, and the majority of the heterogeneity

occurs around the rim of the crater.

Pikas are considered by some to be a sentinel of cli-

mate warming because of their sensitivity to high tem-

peratures (Smith 1974b; Hafner 1993). Our results

suggest that if temperatures continue to increase, pika

connectivity may be adversely affected within CRLA if

the correlation between aspect and gene flow is related

to temperature. Pikas were found at all aspects in this

and previously documented studies (e.g. Erb et al.

2011), suggesting that talus microclimate and/or

behavioural thermoregulation allows them to avoid
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high temperatures. Juvenile pikas typically disperse late

in their active season (summer to early fall) (Smith

1974b) and rarely during the winter months (Peacock

1997). Therefore, increased temperatures will likely

adversely affect population connectivity (i.e. ability to

move through nontalus habitats) before it will affect

population persistence. However, the two are ultimately

interrelated. Streams are not likely to change course

dramatically in the near future, but climate change is

likely to alter the timing and magnitude of water flow.

It is possible that changes in stream flow and/or dis-

persal timing may be affected by climate change, which

could in turn affect whether streams pose a barrier to

pika dispersal (Mote 2003; Stewart et al. 2005).

We need to be cautious about making generalizations

for all pikas from a single study. We cannot yet rule

out the potential influence of land cover in other popu-

lations, nor can we confidently attribute the observed

correlation with aspect to temperature alone. Replicat-

ing this study on many diverse landscapes will

strengthen our ability to tease apart effects of variables

with high correlation in this particular landscape, and

determine which variables limit gene flow for pikas in

general (Short Bull et al. 2011).

Conclusion

American pikas in CRLA appear to be restricted in their

dispersal capability by physical limitations and exposure

to west-facing aspects. These findings have implications

for the long-term persistence of the population in the face

of climate change as increased temperatures may result

in a decrease in population connectivity. However, inves-

tigation of other landscapes is required before ruling out

other variables and making generalizations at the regio-

nal and/or species range scale. Our study also under-

scores the utility of combining empirical optimization

with simulation in landscape genetics. This simulation

study validated our model selection framework for this

particular landscape and suggests that it may be inappro-

priate to discard the Mantel test altogether. We suggest

that future studies similarly evaluate the appropriateness

of this model selection framework for their particular

study areas. Simulation studies also enable us to consider

alternative hypotheses that might produce similar

genetic structure, as well as how changes to the land-

scape may affect genetic structure in future. This study is

an important step in understanding how landscape

affects population connectivity for a species of concern.

Finally, because pikas are a high elevation indicator spe-

cies (Hafner 1993; Beever et al. 2003), this study will

inform future research on climate change impacts and

will have implications for other montane species with

similar habitat requirements.
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