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The persistence of small populations is influenced by genetic structure and functional

connectivity. We used two network-based approaches to understand the persistence

of the northern Idaho ground squirrel (Urocitellus brunneus) and the southern Idaho

ground squirrel (U. endemicus), two congeners of conservation concern. These graph

theoretic approaches are conventionally applied to social or transportation networks,

but here are used to study population persistence and connectivity. Population graph

analyses revealed that local extinction rapidly reduced connectivity for the southern

species, while connectivity for the northern species could be maintained following

local extinction. Results from gravity models complemented those of population graph

analyses, and indicated that potential vegetation productivity and topography drove

connectivity in the northern species. For the southern species, development (roads)

and small-scale topography reduced connectivity, while greater potential vegetation

productivity increased connectivity. Taken together, the results of the two network-based

methods (population graph analyses and gravity models) suggest the need for increased

conservation action for the southern species, and that management efforts have been

effective at maintaining habitat quality throughout the current range of the northern

species. To prevent further declines, we encourage the continuation of management

efforts for the northern species, whereas conservation of the southern species requires

active management and additional measures to curtail habitat fragmentation. Our

combination of population graph analyses and gravity models can inform conservation

strategies of other species exhibiting patchy distributions.

Keywords: functional connectivity, gene flow, graph theory, gravity model, landscape genetics, Sciuridae,
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INTRODUCTION

Habitat loss and fragmentation are threats to many species
of conservation concern (Wilcox et al., 1985; Groombridge,
1992). These agents of landscape change decrease the size and
structural connectivity of habitat patches, with consequences
for long-term population viability and species distributions
(Kareiva andWennergren, 1995; Fahrig, 2002). Decreased animal
movement, and subsequent reduction in gene flow, can lead to
isolated populations and constricted species ranges (Andrews,
1990; Yahner and Mahan, 1997; Fahrig, 2002). Over time,
reduced gene flow can decrease population size, alter population
dynamics, and lower persistence probability (Meffe and Carroll,
1997; Ovaskainen and Hanski, 2003). Isolated populations
typically have low levels of genetic variation (Frankham, 1997)
that inhibit adaptation in the face of environmental change
(Lande, 1988) and increase vulnerability to inbreeding depression
(Frankham, 1995; Hedrick, 2005) and local extinction (Burkey,
1995; Frankham et al., 2002).

As the long-term persistence of populations in fragmented
landscapes depends on functional connectivity, or how
individuals respond to landscape composition (Tischendorf
and Fahrig, 2000; Stevens et al., 2006), research that assesses
the effects of landscape and ecological features on gene flow
serves as a valuable conservation tool (McRae et al., 2008). The
spatial context and composition of habitat patches generally have
profound influences on animal movement beyond the effect of
geographical distance alone (Ricketts, 2001). Landscape genetic
methods are particularly suited to test how environmental
context influences patterns of genetic variation and gene
flow across temporal and spatial scales (Manel et al., 2003;
Storfer et al., 2007; Holderegger and Wagner, 2008), and have
recently been strengthened by the integration of graph theoretic
approaches (Garroway et al., 2008; Murphy et al., 2016).
These approaches provide a mathematical framework in which
researchers can represent populations or sites as “nodes” and
connections between them as “edges,” and then evaluate patterns
of connectivity to identify environmental factors underlying
gene flow (Dyer and Nason, 2004; Garroway et al., 2008; McRae
et al., 2008; Dyer et al., 2010; Murphy et al., 2010).

Graph theory can be used to assess functional connectivity,
and may therefore provide important information for
conservation planning. Network metrics such as degree
centrality and betweenness (Everett and Borgatti, 2005)
measure the relative contribution of sampled sites to overall

population connectivity, and thus can pinpoint the best locations

for conservation or management actions. Gravity models

(Fotheringham and O’Kelly, 1989) can simultaneously evaluate

the relative influence of geographic distance, local attributes
of sampling locations (at-site characteristics), and the features
that separate them (between-site characteristics) on gene flow
(Murphy et al., 2010). Typical landscape genetic network models
do not include the influence of local attributes. By including
at-site characteristics in these models, we can incorporate
additional factors contributing to gene flow by quantifying how
habitat patches differ in quality (Ovaskainen and Hanski, 2003).
Patches of higher quality habitat may produce more offspring

and thereby contribute disproportionately to gene flow. Gravity
models can help determine how landscapes should be managed
to maintain connectivity and improve patch quality, and network
metrics can identify where managers should focus conservation
efforts.

The northern Idaho ground squirrel (Urocetillus brunneus;
NIDGS) and the southern Idaho ground squirrel (U. endemicus;
SIDGS) are two congeners of conservation concern. NIDGS and
SIDGS are endemic to west-central Idaho and were originally
classified as two subspecies (Yensen, 1991) but were recently
elevated to distinct species based on genetic differences (U.S.
Fish and Wildlife Service, 2015), morphology, behavior, and
distinct geographic and ecological niches (Hoisington-Lopez
et al., 2012). These species occur in small, discrete populations
within a fragmented landscape (Van Horne et al., 2007; Yensen
et al., 2008). Consequently, population graph analysis and gravity
models can lend insight into factors affecting their population
connectivity.

Their ranges are restricted and fragmented; both species have
experienced population declines and reductions in the number
and total area of sites occupied (Sherman and Runge, 2002; U.S.
Fish and Wildlife Service, 2003; Yensen et al., 2008; Lohr et al.,
2013). In recent years, the number of occupied locations and
subpopulations has remained relatively stable, while the number
of mature individuals appears to fluctuate according to several-
year cycles (EvansMack, personal communication). For example,
between 2011 and 2016, overall population size ranged between
just under 1,000 and over 2,500 individuals. Consequently,
the United States Fish and Wildlife Service listed NIDGS as
threatened in 2000 (Clark, 2000), while SIDGS was a candidate
for listing until just recently (Federal Register, November 22,
2013 Vol. 68, No. 226:77 70103-7016). Primary threats to
NIDGS include the loss of preferred habitat to ponderosa
pine (Pinus ponderosa) encroachment due to fire suppression
(Yensen and Sherman, 1997; Gavin et al., 1999; Sherman and
Runge, 2002), and competition with the Columbian ground
squirrel (Urocitellus columbianus; Dyni and Yensen, 1996).
The latter species occurs throughout central Idaho, potentially
overlapping populations of both Idaho ground squirrels. Declines
in SIDGS are attributed to the invasion of non-native annual
plants, including cheatgrass (Bromus tectorum) and medusahead
(Taeniatherum asperum), which have increased fire frequency
and intensity with subsequent shifts in vegetation composition
(Yensen, 1991; Lohr et al., 2013).

The loss and degradation of preferred habitat have
consequences for the long-term persistence of remaining
NIDGS and SIDGS populations. Population divergence has been
detected for NIDGS using allozymes (Gavin et al., 1999), and for
both species using mitochondrial DNA (Yensen and Sherman,
1997; Garner et al., 2005; Hoisington-Lopez et al., 2012) and
microsatellite data (NIDGS: 0.03 < FST < 0.46; SIDGS: 0.04
< FST <0.43; Garner et al., 2005; Hoisington-Lopez et al.,
2012). In addition, both species have low to moderate levels of
genetic diversity (allelic richness, expected heterozygosity, and
haplotype diversity; Garner et al., 2005; Hoisington-Lopez et al.,
2012) that are likely a consequence of isolation and bottleneck
events. The effects of landscape and environmental variables
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on genetic diversity and connectivity of NIDGS and SIDGS
have not been evaluated in depth. Understanding the ecological
drivers underlying site productivity and factors facilitating
gene flow among habitat patches is a critical conservation need
for both species. Identifying sites that contribute the most to
functional connectivity is also essential for making conservation
and management decisions.

Our primary goal was to quantify functional connectivity
among NIDGS and SIDGS populations and identify sites
contributing the most to gene flow to help inform conservation
and management efforts. We aimed to evaluate functional
connectivity for each species using genetic patterns and identify
at-site and between-site variables influencing gene flow. We
hypothesized that the production of potential migrants from
a site would be affected by forage availability as indicated by
local climate measures. For NIDGS, availability of meadow
(i.e., grassland) should be an important factor in population
connectivity since this preferred habitat has been reduced
by forest encroachment. For SIDGS, highly developed areas
(measured by impervious surfaces) should reduce functional
connectivity due to potential movement barriers and the
likely increased incidence of non-native plants species. We
also examined topographic complexity, waterways, soils, and
competition from Columbian ground squirrels (U. columbianus)
as potential drivers of functional connectivity.

MATERIALS AND METHODS

Study Area and Species
We examined the functional connectivity of northern and
southern Idaho ground squirrel populations from 23 sites within
5 counties located in west-central Idaho (Figure 1, Table S1).
No new field or genetic data were collected for this study.
All procedures for initial data collection were approved by the
University of Idaho Animal Care and Use Committee (2006-35),
Idaho Fish and Game state permit (060308), and federal permit
for U. brunneus (subpermit FWSSRBO-5). Extant, sampled
NIDGS and SIDGS populations were previously determined by
methods described by Yensen (1991). Mean sampling location
area (±SE) was 0.44 ± 0.21 km2 for NIDGS and 0.42 ± 0.11
km2 for SIDGS. The study area includes the geographically
discrete ranges of both species, extending between the Salmon
and Payette Rivers. NIDGS inhabit mid to high elevations
(1,150–2,300 m) in xeric, montane meadows, and grasslands
surrounded by coniferous forests (Yensen, 1991; Yensen and
Sherman, 1997). SIDGS occur at lower elevations (670–975
m) in sagebrush and bitterbrush habitats with interspersed
perennial bunchgrasses and forbs (Hafner et al., 1998; IDFG
unpublished data). The majority of habitat is under public
ownership, with private land primarily at lower elevations (U.S.
Fish and Wildlife Service, 2013). Land use includes logging,
agriculture, grazing, and suburban developments (Yensen et al.,
2008).

Genetic Data
We obtained multilocus, microsatellite genotypes from previous
studies that, cumulatively, sampled most IDGS populations

FIGURE 1 | Sampling locations of genetic data for northern Idaho ground

squirrel (Urocetillus brunneus; NIDGS) and southern Idaho ground squirrel

(U.endemicus; SIDGS). Also shown are the NIDGS probable historic

distribution (U.S. Fish and Wildlife Service, 2003) and the current known range

for SIDGS (Idaho Game and Fish Department). Individuals were sampled from

2002 to 2006 (Hoisington-Lopez et al., 2012). Background hillshade map was

produced from the National Elevation Dataset (http://ned.usgs.gov). Full site

names and sample sizes can be found in Table S1.

comprised of more than 10 individuals (Figure 1; Supplementary
Data Sheet 1, Garner et al., 2005; Hoisington-Lopez et al., 2012).
NIDGS sampling occurred in 2002 and 2006, and included
316 individuals from 13 locales (Table S1; Hoisington-Lopez
et al., 2012). We excluded one NIDGS population from this
study (Round Valley), as previous results indicate that it is both
geographically and genetically isolated from all other NIDGS
populations, and thus could lead to spurious correlations with
landscape variables (Cushman and Landguth, 2010). SIDGS
sampling consisted of 263 individuals in 2002 and 2006 from 11
locations (Table S1). When samples were collected at the location
in multiple years, we tested for differences in allele frequency
distributions before combining data (Hoisington, 2007). We
used data from previously published microsatellite loci (n =

8) in Hardy–Weinberg equilibrium that showed no linkage
disequilibrium (Hoisington-Lopez et al., 2012).

For each species, we calculated three measures of genetic
distance between populations to serve as response variables
in network models: (1) the proportion of shared alleles (DPS;
Bowcock et al., 1994), calculated using Microsatellite Analyzer
4.05 (Dieringer and Schlötterer, 2003); (2) conditional genetic
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distance (cGD; Dyer et al., 2010), using Genetic Studio (Dyer,
2009) in R (gstudio 0.8, R Core Development Team, 2012);
and (3) the fixation index (FST), a commonly used measure
of population structure, calculated using Fstat (Goudet, 1995).
DPS is not subject to the equilibrium assumptions inherent in
divergence (FST) measures, and thus may be more appropriate
for measuring genetic connectivity among populations subject to
recent disturbance, and cGD has been shown to outperform FST
in some situations. Furthermore, cGD focuses only on population
pairs that exhibit conditional dependence with one another and
thus are likely to be directly exchanging migrants, and ignores
population pairs that are conditionally independent and likely
not directly exchanging migrants (Dyer et al., 2010). For each
species, we additionally performed a Mantel test (Smouse et al.,
1986) to examine the correlation of geographic distance with the
two relevant metrics of genetic distance, DPS and FST (Table S2).

Population Graph Analysis
To conduct the population graph analyses, we used cGD (Dyer
et al., 2010), a metric that calculates the distance between each
pair of nodes, thereby accounting for the genetic covariance in
the whole network. The method examines pairwise correlations
in inverted cGD values among sampling locations and draws an
edge between two nodes if the partial correlation between them
is significantly higher than expected by chance. The subsequent
pruned graph contains the minimal number of edges which
will sufficiently describe the total covariance structure among
populations (Dyer et al., 2010). Because pruned networks are
more information than saturated networks (Dyer and Nason,
2004), we kept them for subsequent analyses.

To help guide conservation actions, we determined the
number of significant genetic units (genetic clusters) using two
community detection methods, which identify “communities” of
more highly connected nodes (Girvan and Newman, 2002). The
first, Girvan-Newman uses an optimization procedure based on
eigenvalues to calculate the support for different cluster numbers
in terms of modularity (Q; the existence of non-overlapping
groups of nodes in the network). The best-supported model
of community division receives the highest modularity value
(Newman, 2006). The second, the Walktrap algorithm, finds
subgraphs of more densely connected nodes based on random
walks and also calculates overall modularity (Pons and Latapy,
2006). To perform these analyses, we built a binary network for
each species.

To determine the relative contribution of each sampling
location to overall gene flow, we investigated the network
topologies of both species by calculating four network metrics
for each node: (1) degree centrality—the number of connections
that each node has in the network (Everett and Borgatti,
2005), (2) strength centrality—the sum of all association indices
(i.e., weighted connections among nodes) that each node has
in the network (Garroway et al., 2008), (3) betweenness—the
number of shortest paths that a particular node or edge lies
on, which can identify bottlenecks (Everett and Borgatti, 2005),
and (4) coreness—an algorithm that tests for the existence of
a core/periphery structure in the network and calculates the
location of each node in relation to the core. Based on the number

of core nodes, we additionally calculated a concentration score
(ranging from 0 to 1) which quantifies how close the network is
to an idealized core-periphery model, in which all nodes in the
core are connected within the core and to the periphery nodes
and all nodes in the periphery are not connected (Borgatti and
Everett, 1999). In the context of genetic networks, the coreness of
a node can be interpreted as the extent to which it acts as a source
for dispersing individuals. Sampling location abbreviations are
presented in Table S1.

To examine the vulnerability of each species to local
extinction, we assessed network sensitivity to node removal
(Figure 2). Node removal simulates local patch extinction, a
recurrent event in species that exhibit metapopulation structure
(Hanski, 1998). We sequentially removed random nodes to
generate up to 100 population graphs for each scenario (e.g.,
1, 2, 3 nodes removed). For each of the simulated graphs, we
assessed overall gene flow using two metrics: (1) Proportion
of fully connected graphs, quantifying the extent to which the
population graph will become fragmented as a result of node
removal; (2) Size of the largest graph component, measuring
the maximal number of nodes that retained connectivity among
them.We calculated this metric proportional to the total network
size.We built 95% confidence intervals, based on standard errors,
around the proportional size of the largest component for each
node removal scenario.

Gravity Models
We used gravity models (Fotheringham and O’Kelly, 1989;
Murphy et al., 2010) to analyze the effects of abiotic and
biotic variables on population connectivity. We modeled gene
flow [1-genetic distance (DPS)] as a function of geographic
(Euclidean) distance (w), attributes of nodes (v), and landscape
resistance factors (c) that limit or facilitate movement of
individuals between nodes (Murphy et al., 2010). We developed
a set of a priori hypotheses to describe ecologically relevant
processes affecting at-site production of migrants and between-
site landscape resistance for both species (Table 1).

We used 30m landcover data from the LANDFIRE Existing
Vegetation Type dataset, and used our between-site calculations
to assess habitat permeability (http://landfire.cr.usgs.gov/
viewer). We extracted the landcover data for grassland,
shrubland, agriculture, and impervious surfaces (i.e., roads
and developed areas). We then calculated percent cover for
each cover type within a 90 × 90 pixel moving window. We
calculated surface relief ratio (srr; Evans, 1972) from 10m
Shuttle Radar Topography Mission digital elevation models
using two neighborhood sizes (3 × 3 and 27 × 27 pixels),
to assess topographic resistance to gene flow. We used the
Geomorphometry and Gradient Metrics Toolbox (http://
evansmurphy.wix.com/evansspatial#!arcgis-gradient-metrics-
toolbox/crro) in ArcMap 10.2. We tested 6 biotic and abiotic
variables hypothesized to affect at-site production/attraction (v)
of IDGSmigrants, such as climate, soil type, vegetation cover, and
inter-specific competition. For landscape resistance between sites
(c), we developed a set of 6 abiotic and biotic variables that relate
to habitat permeability, topography, hydrologic complexity,
and road density. For between-site variables, we calculated the
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FIGURE 2 | Illustration of the node removal procedure used to simulate population extinction events in NIDGS (top) and SIDGS (bottom). In each step, a randomly

selected node (in red), representing a sampling location, is removed from the network along with the edges connecting it to additional nodes. Network mean

betweenness values are given on top. Following the removal of 2 nodes, the SIDGS network fails to create a single component, becoming fragmented.

average or variance along each edge (30m width) connecting
populations in the network. We also tested for the effect of spatial
scale of each variable by building buffers along edges of 30, 150,
and 300m widths, and then calculating between-site values
within each buffer (Murphy et al., 2010). Since each of these
metrics was highly correlated with the along-line calculations (R2

> 0.8), we used straight-line, 30m width edge results for these
metrics.

In spatially explicit genetic networks, incomplete sampling of
nodes can lead to bias when using a pruned graph (Naujokaitis-
Lewis et al., 2013). Given the small number of locations sampled
for each species, we retained the fully connected networks
for the gravity modeling procedure. Gravity models were run
in R using the GeNetIt package. We used a hierarchical
modeling approach to compare models that included one or
more landscape variables with a distance-only (null) model.
We used singly constrained models as they account for non-
independence of pairwise comparisons. Gravity models were

solved in mixed effects linear models using maximum likelihood
(Zuur et al., 2009).We specified at-site and between-site variables
as fixed effects and the identities of nodes as random effects
(Murphy et al., 2010). We initially ran a null (distance) model
and subsequently modeled at-site variables and between-site
variables separately. We then built combined gravity models that
included both classes of variables, via the inclusion of the best-
supported, at-site and between-site variables identified during the
first procedure. To avoid co-linearity, models did not include
pairs of candidate variables correlated at 0.7 or higher (Table
S5). We used Akaike information criterion scores adjusted for
small sample size (AICc) to identify the best-supported models
(Akaike, 1973; Burnham and Anderson, 2002). We additionally
calculated conditional (including both fixed and random factors)
R2 values for each model (Nakagawa and Schielzeth, 2013).
We plotted network flow against each variable identified as
significant in the best-supported models to assess the direction
of the effects of candidate variables. We subsequently calculated
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cumulative AIC weight for each variable by summing the weights
of each model in which this variable was included (Burnham and
Anderson, 2002).

RESULTS

Population Graph Analysis
In the cGD pruning procedure, population graphs retained a
total of 24 (31% of saturated network) edges connecting 13
nodes for NIDGS and 16 (36% of saturated network) edges
connecting 10 nodes for SIDGS (Figure 3).We identified support
for 2 and 3 genetic clusters via Girvan–Newman and Walktrap
[modularity scores: Q(2)Girvan−Newman = 0.33; Q(2)Walktrap =

0.34, Q(3) = 0.33] for NIDGS. The 2-cluster model included
1 cluster in the northwestern portion of NIDGS range and
a second cluster in the southeastern portion. Both algorithms
agreed on all sampling location cluster assignments except
study site LCL. For SIDGS, the model with 3 clusters received
the highest modularity score [modularity scores: Q(2) = 0.26,
Q(3)Girvan−Newman = 0.29; Q(3)Walktrap = 0.30]. Modularity,
reflecting compartmentalization within each network, was
slightly lower in SIDGS compared to NIDGS. The 3-cluster
model included a cluster in the northwestern portion of the
species’ distribution, separated by the Weiser River and the
agricultural area surrounding it from 2 discrete clusters, located
in the southern and central area of the range. There was no
evident spatial segregation between the southern and central
clusters.

In NIDGS, the node strength centrality and betweenness
metrics suggested higher connectivity for the western
populations (Table S3). The coreness analysis provided the
best support for a model with 5 nodes at the core and 8 at
the periphery. For the 5-node core model, the concentration
score was 0.91. The 5 core nodes, corresponding to the CW
(betweenness = 15.08), HU (13.08), SG (2.25), SM (9.41), and
HW (11.08) populations were located in the western portion
of the range, confirming the patterns suggested by the other
network metrics (Table S3). Spatial patterns were less evident in
the network topology analysis of SIDGS. Sampling locations RH-
HC (17.50), HG (29.44), SB (10.32), and CP (14.17), representing
distinct areas of the species’ range and all 3 genetic clusters, had
the highest betweenness (Table S3). The core/periphery model
results revealed that the optimal model included 3 nodes at the
core (corresponding to HG, SB, and Sk) with a concentration
score of 0.84.

The node removal simulation analysis indicated that in the
range of 2–5 removed nodes, SIDGS networks had higher
probability of fragmentation by not creating a fully connected
component (e.g., 3 nodes removed: NIDGS—97%, SIDGS—66%
fully connected networks; Figure 4A). This larger fragmentation
probability resulted in the largest components in SIDGS
proportionally consisting of fewer nodes compared to NIDGS
(e.g., 3 nodes removed: NIDGS—0.99, 95% CI = 0.98–1.0;
SIDGS—92%, 95% CI = 0.9–0.94; Figure 4B). Taken together,
both network connectivity metrics indicated higher resilience of
the NIDGS network to node removal.
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FIGURE 3 | Network diagrams representing the genetic relationships between

northern (a) and southern (b) Idaho ground squirrel sampling locations.

Networks are pruned using conditional genetic distance (cGD; Dyer and

Nason, 2004). Individuals were sampled during 2002–2006. Node colors differ

by cluster assignment with the Girvan-Newman algorithm. Nodes are placed

according to geographic location and scaled to reflect coreness, a network

metric that quantifies proximity to the core in a core/periphery model (Table

S3). Edge width is proportional to the genetic flow between sampling locations.

Gravity Models
The mean geographic distance between sampled locations for
NIDGS and SIDGS was 16.1 and 28.9 km, respectively. For
NIDGS subpopulations, the pairwise genetic distance (DPS)
averaged (±SE) 0.41 ± 0.01, ranging from 0.23 to 0.56. SIDGS
subpopulations had an average DPS of 0.34 ± 0.02, ranging from
0.17 to 0.53. FST values were more similar among species, with
means ±SE 0.19 ± 0.01 in NIDGS (range: 0.03–0.48) and 0.18
± 0.01 for SIDGS (range: 0.04–0.41). For both species, pairwise
genetic distance metrics were highly correlated (NIDGS r = 0.89;
SIDGS r = 0.96). Mantel test results indicated a significant
correlation between geographic distance and both metrics of
genetic distance for NIDGS (DPS: r = 0.39, P = 0.001; FST:
r = 0.38, P = 0.002), and a stronger pattern in SIDGS (DPS:
r = 0.64, P < 0.001; FST: r = 0.57, P < 0.001).

The top variables for the NIDGS saturated network included
those associated with potential site productivity (v: hli, gsp)
and topography (c: srr27, srr3; Table 2, Figure 5). For NIDGS,
geographic distance (w) was the sixth-ranked model, with a
1AICc of 4.4. Heat load index (hli) positively correlated with

FIGURE 4 | The effects of random sequential removal of nodes on proportion

of connected graphs (A) and the largest remaining network component (B) for

northern Idaho ground squirrels (solid line) and southern Idaho ground

squirrels (dashed line). Proportions, means and 95% confidence intervals were

calculated for up to 100 simulated networks in each scenario. Idaho ground

squirrels were sampled from 23 locations during 2002–2006 and genotyped

using 8 microsatellite loci (Hoisington-Lopez et al., 2012).

gene flow and had the greatest support among at-site variables
(variable weight: 0.63), while growing season precipitation had
a weight of 0.06. One additional at-site variable, frost-free
period (ffp: 0.04), received some variable weight but did not
appear in those models that improved on the distance-only
model. Measures of large-scale (srr27: 0.54) and small-scale (srr3:
0.08) topographic complexity negatively correlated to gene flow,
and were the between-site variables with the greatest weights.
Variables describing land cover, interspecific competition, and
human disturbance received negligible support (Table S3). For
individual parameter estimates, see Table S6.
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TABLE 2 | Gravity model results of the best-supported models for northern and southern Idaho ground squirrels.

Species Full model description Type 1AICc AIC weight Conditional R2

northern Idaho ground squirrel w + hli − srr27 at + between 0.0 0.33 0.40

w − srr27 between 1.3 0.17 0.41

w + hli at 2.5 0.09 0.36

w + hli − srr3 at + between 3.9 0.05 0.37

w + gsp + hli − srr27 at + between 4.2 0.04 0.39

w distance 4.4 0.04 0.38

southern Idaho ground squirrel w + ffp + hli − imperv − srr3 at + between 0 0.42 0.47

w + gsp + hli − imperv − srr3 at + between between 0.5 0.33 0.47

w + gsp − imperv − srr3 at + between between 3.6 0.07 0.46

w + hli − imperv − srr3 at + between 3.9 0.06 0.44

w + ffp − imperv − srr3 at + between 5.3 0.03 0.46

w + ffp + hli − agri − srr3 at + between 6.7 0.01 0.44

w − imperv − srr3 between 6.9 0.01 0.44

w + gsp + hli − agri − srr3 at + between 7.3 0.01 0.44

w distance 15 0.00 0.37

Type indicates whether the model includes at-site, between-site, or both categories of predictors. A full list of models in available in Tables S3, S4.

For SIDGS, gene flow was positively correlated with at-site
productivity and negatively correlated with between-site factors
associated with reduced landscape permeability including
human disturbance (imperv, agri) and small-scale topographic
complexity (srr3; Table 2). For SIDGS, heat load index (hli) at
sites was positively correlated with gene flow (variable weight:
0.83). Growing season precipitation (gsp: 0.42) and frost-free
period (ffp: 0.46) also positively related to gene flow. Small-
scale topographic complexity (srr3: 0.95) appeared in all top
models and negatively correlated with gene flow. Impervious
surfaces appeared in six of eight top models, contributing 92%
AIC weight, and was negatively correlated with gene flow.
Agricultural areas impeded gene flow, but this land cover type
received minimal weight (agri: 0.02). Variables describing land
cover classes and stream densities received negligible support
(Table S4).

DISCUSSION

We combined two graph theoretic approaches to enhance our
understanding of the functional connectivity of two Idaho
ground squirrel species and to inform conservation efforts.
Population graph analysis revealed that the pattern and strength
of network connectedness differed by species. Node removal
simulations suggested that in the event of local patch extinction,
SIDGS would likely lose connectivity rapidly, while NIDGS
would maintain gene flow despite the removal of several patches
or nodes. Gravity models revealed the influence of at-site
productivity variables in both species, a finding that would not
have been detected in traditional network approaches. These
models also revealed effects of topographic complexity at two
different spatial scales: fine-scale variation for SIDGS and broad-
scale and fine-scale variation for NIDGS. Development, as

measured by impervious surfaces, was a major hindrance to
SIDGS gene flow.

Patterns of Genetic Structure
We found support for 2 or 3 genetic clusters in NIDGS
and similar support for 3 genetic clusters in SIDGS using
network community detection (Newman, 2006). Functional
connectivity among habitat patches in NIDGS appears to be
limited by a mountain ridge, with subpopulations clustered in
the northwestern and southeastern portions of the range, and
this result is similar to that obtained via STRUCTURE (Pritchard
et al., 2000; Hoisington, 2007). However, one site (CW) located
in the southwestern portion of the species’ range (Figure 3),
deviated from this pattern. Interestingly, the population graph
links CW to 3 populations in the northwestern cluster, and the
2 populations spatially adjacent to CW (ChS and HW) in the
southeastern genetic cluster. This pattern, which is consistent
with mitochondrial DNA analyses (Hoisington, 2007), could be
explained by repeated translocations of individuals from SM
and surrounding sites into CW (Gavin et al., 1999) as well as
natural recolonization from HW. For SIDGS, our population
graph detected a unique genetic cluster in the northern portion
of its range, composed of 3 populations. This suggests that the
Weiser River acts as a barrier to gene flow as suggested in
previous analyses (Garner et al., 2005; Hoisington, 2007). The
optimal model for SIDGS had a modularity score lower than
0.3. Our results reveal genetic connectivity across the southern
portion of the SIDGS range despite considerable fragmentation
due to agriculture. In general, there was congruence between the
community detection results and previous Bayesian clustering
analyses (Hoisington, 2007). Population graph community
detection algorithms base their calculations on genetic distances
among nodes and thus have the advantage of including the
contribution of ancestries from other genetic clusters. The
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FIGURE 5 | Cumulative AICc weights of several factors examined with gravity

models as candidates for driving NIDGS (red circles) and SIDGS (blue circles)

gene flow. Panels include cumulative AICc weights for each factor in all

examined models (A) and only the top-ranked model for each factor (B).

Positive and negative values represent the direction and magnitude of relative

support for each factor’s influence.

similarity in results suggests that these methods are well suited
for our study system and applicable in additional systems where
genetic data can be represented as population graphs.

Network topology metrics, calculated at the sampling location
level, were consistent with these patterns. NIDGS nodes with the
highest strength and betweenness were the ones that belonged to
the core according to the core-periphery model. One exception
was PV, which is spatially central and highly connected, but did
not constitute a core node. All NIDGS core nodes were found in
the western portion of the species’ range. In addition, themajority
of edges among these nodes were retained in the pruned network
(Figure 3A). This may indicate that the western portion of the
range is a source for dispersing individuals. With the exception
of the CW population, the NIDGS population graph topology
indicates a west-to-east gradient of connectivity. In SIDGS, nodes
with high overall connectivity according to degree, strength, and

betweenness, such as CP and PFS, were not included in the core
and had relatively lower coreness (Figure 3B; Table S3). Core
nodes (HG, SB, and Sk) all belonged to the same genetic cluster
and were located in the southeastern part of the species’ range.
Interestingly, the most spatially central locations (PFS and MC)
were not the most connected ones, suggesting that there are
additional factors driving SIDGS gene flow beyond geographic
distance.

The correlation of network structure to the idealized
core/periphery model was slightly higher for NIDGS (0.91)
compared to SIDGS (0.84), as was the proportion of core nodes.
This slight difference may be explained by the lack of spatial
organization in the SIDGS network (Figure 3). Overall, our
population graph analyses indicate that gene flow among NIDGS
locations is higher compared to SIDGS, which is consistent with
the relatively large geographic distances found among SIDGS
populations. Our use of core/periphery models to assess genetic
data is a novel application of amethodology previously developed
for social networks (Borgatti and Everett, 1999), and provides
an additional metric to quantify node contribution, which may
reflect the degree to which discrete sites are sources or sinks for
dispersers.

Simulated node removals indicated an immediate decline
in overall connectivity among SIDGS nodes, compared to the
relative robustness to node removal in NIDGS (Figure 4),
suggesting that the few connections retained in the SIDGS
population graph have an increased conservation value for this
species. In addition, these results imply that local extinction
of 2 current subpopulations would drive a substantial decline
in functional connectivity. SIDGS occur in areas prone to
intense human activity and subpopulations are separated by large
geographic distances. Our results highlight the susceptibility of
this species to future habitat loss and fragmentation, and raise
concern over further isolation of the remaining subpopulations.
In contrast, simulated node removal in the NIDGS population
graph suggests that this species is relatively robust to localized
extinctions. The pruned population graph retained a similar
proportion of edges, comprised of shorter distances, among
subpopulations compared to the SIDGS graph. These results, in
conjunction with lower levels of human disturbance across the
NIDGS range, suggest that in the event of local extinctions the
species may be better able to maintain population connectivity
(Fahrig, 2002; Driscoll, 2004).

Functional Connectivity
The variables that were important in gravity models differed
between species. We predicted that at-site variables associated
with potential productivity would be positively correlated with
functional connectivity for both species. Population size at each
site would likely be an important predictor of gene flow, but
these data were not available. However, population estimates are
relevant to the conservation of both species and should be a
priority for data collection. We also hypothesized that between-
site variables indicative of high habitat quality would facilitate
gene flow, while variables reflecting human activity would inhibit
gene flow.
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Model fit, as measured by conditional R2, was moderate for
both species (R2 ∼ 0.4). These results could be an artifact of our
limited power to detect variation in habitat variables across the
study areas (Short Bull et al., 2011), especially in light of the small
number of extant populations occurring over restricted ranges
(Figure 1).

Nevertheless, a number of at-site variables were identified as
predictors of gene flow. Heat load index (hli), a surrogate for
vegetation productivity, was one at-site variable that contributed
to gene flow in both species. This metric had substantial
cumulative AIC weight across models of NIDGS (w = 0.63)
and SIDGS (w = 0.83) connectivity. Sites with a higher hli
may yield a larger number of squirrels with improved body
conditions due to increased forage availability and quality. The
finding that NIDGS are primarily structured, apart from isolation
by distance, by at-site productivity, would have been difficult
to detect with other landscape genetic statistical approaches.
Additionally, two other at-site variables associated with potential
productivity facilitated gene flow for both species. Longer frost-
free periods and increased growing-season precipitation were
associated with higher connectivity. Lohr et al. (2013) reported
that the greatest densities of SIDGS were associated with higher
cover of perennial grasses, native perennial forbs, and higher
plant species diversity. The combination of solar intercept (hli),
long growing season (ffp), and greater rainfall (gsp) may result in
high forage quality and quantity for ground squirrels. Therefore,
at-site vegetation production is likely an important characteristic
in maintaining viable populations for both species.

Landscape features that restricted gene flow differed for the
two species. The population graph results for NIDGS revealed a
division between the western and eastern sampling areas that are
geographically separated by a mountain ridge. This is mirrored
in the gravity model results, for which large-scale topographic
complexity (srr27) received 54% weight across models. At this
broad scale, srr is likely detecting ridges as a filter to movement,
and this pattern is visually apparent when the graph of population
structure is overlaid on topography (Figure 3A). Three landscape
features were identified as barriers to gene flow for SIDGS:
impervious surfaces, small-scale topographic complexity, and,
to a minor extent, agriculture. Populations were less connected
in highly developed areas as measured by imperviousness of
surfaces along edges connecting nodes. Impervious surfaces
primarily reflect the presence of roads. Gene flow could be
disrupted across roads due to avoidance of high traffic areas
or altered roadside habitat, increased mortality from vehicle
collisions, or a combination of these factors. Although roads
are often considered an important source of mortality for many
wildlife species (Forman, 1998), small mammals may select these
areas (Oxley et al., 1974), and the effects on small mammal
behavior and movement may be contingent on road type and
traffic volume (Brock and Kelt, 2004). Previous results indicate
that dispersing Idaho ground squirrels repeatedly use dirt roads
as corridors (Panek, 2005). The absence of support for road
effects on NIDGS could be attributed to lower densities of high-
volume traffic (paved) roads surrounding the sampling sites for
this species. The negative impact of agricultural areas on gene

flowmay imply an avoidance of these areas, although the variable
weight for this metric was small.

Restriction of gene flow in both species due to small-scale
topographic complexity (srr3) likely reflects a preference for
low-elevation, flat grasslands characteristic of the meadows.
Gravity models failed to show any support for either ephemeral
or perennial streams as drivers of gene flow (Tables S3, S4).
However, our population graph analysis identified the Weiser
River as a likely barrier to gene flow. Thus, our inability to
detect an important barrier to gene flow with gravity models was
supplemented by the results from our population graph analysis.
These complementary results highlight the benefits of using
multiple analytical methods for detecting patterns in genetic data.

Conservation Implications
Our findings of differences in functional connectivity and
its drivers highlight the need for different conservation and
management strategies for each species of Idaho ground squirrel.
Results from the node removal analysis suggest that NIDGS
populations are more connected and relatively resistant to
metapopulation collapse from local population extinctions.
Although, SIDGS are no longer a candidate for federal listing,
their subpopulations may be more susceptible to future habitat
loss and fragmentation than NIDGS (Hoisington-Lopez et al.,
2012). Connectivity in NIDGS was driven mainly by potential
site productivity and topographic characteristics, and not a lack
of suitable habitat. These combined lines of evidence suggest
that recent conservation efforts for NIDGS have been effective
at maintaining this species’ gene flow and diversity, and should
therefore be continued.

Our results for southern Idaho ground squirrels suggest this
species is extremely vulnerable. SIDGS sites are geographically
distant from one another and highly sensitive to node removal
(i.e., local extinction). Sites that are poorly connected, and
thus unlikely to be recolonized following an extirpation event,
may be good candidates for reintroduction. Additionally, sites
that are highly connected might be examined for landscape
characteristics that could be used as part of novel site
reintroduction selection criteria. Translocations have been
attempted with apparent success for SIDGS (Yensen and Tarifa,
2012), and these efforts, combined with supplementation from
captive breeding, may become important for maintaining genetic
connectivity and diversity in SIDGS populations (Hoisington-
Lopez et al., 2012). Given the distances that separate SIDGS sites,
we support the recommendation of Garner et al. (2005) that
managers consider establishing additional populations to serve
as stepping stones for connectivity. Our gravity model results
suggest that factors relating to at-site vegetation productivity
affect SIDGS genetic structure. A large amount of SIDGS habitat
is located either in agricultural areas or sites dominated by
invasive cheatgrass, both of which may be difficult to restore.
While it appears that NIDGS have responded positively to habitat
restoration, this strategy is less likely to successfully improve
SIDGS habitat and functional connectivity due to the pervasive
invasion of exotic weeds in their range (Yensen, 1991).
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CONCLUSIONS

When working with species of conservation concern, it is
important not only to assess genetic structure, but also to
identify the factors that influence genetic connectivity. Here, we
illustrate the value of using recently developed network-based
approaches to examine functional connectivity for two vulnerable
species of Idaho ground squirrels. Population graphs enhanced
our understanding of each species’ resistance to potential
future loss of habitat patches or populations. Gravity models
provided new insights into landscape-related processes that drive
genetic structure of these imperiled species, particularly by
identifying at-site influences on gene flow. We conclude that the
combination of these methodologies allows stronger inference
and a more complete assessment of genetic structure. Network
models are especially advantageous for representing gene
flow in species exhibiting patchy distributions. We encourage
further exploration of these methodologies as a framework for
hypothesis testing in future landscape genetics studies.
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