124 research outputs found

    Why do models overestimate surface ozone in the Southeast United States

    Get PDF
    Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx  ≡  NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°  ×  0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer

    Organic Nitrate Chemistry and Its Implications for Nitrogen Budgets in an Isoprene- and Monoterpene-Rich Atmosphere: Constraints From Aircraft (SEAC4RS) and Ground-Based (SOAS) Observations in the Southeast US

    Get PDF
    Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with approximately 25 times 25 km(exp 2) resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 2550 of observed RONO2 in surface air, and we find that another 10 is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10 of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60 of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20 by photolysis to recycle NOx and 15 by dry deposition. RONO2 production accounts for 20 of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline. XXXX We have used airborne and ground-based observations from two summer 2013 campaigns in the Southeast US (SEAC4RS, SOAS) to better understand the chemistry and impacts of alkyl and multi-functional organic nitrates (RONO2). We used the observations, along with findings from recent laboratory, field, and modeling studies, to update and evaluate biogenic volatile organic compound (BVOC) oxidation schemes in the GEOS-Chem chemical transport model (CTM). From there, we used the updated CTM with 0:25 0:3125 ( 2525 km2) horizontal resolution to examine RONO2 speciation, chemical production/loss processes, and importance as a sink for NOx. Our improved mechanism provides a state-of-the-science description of isoprene oxidation in the presence of NOx, wit

    Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    Get PDF
    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US Environmental Protection Agency (EPA) projects 2013-2025 decreases in anthropogenic emissions of 34 % for NOx (leading to a 7 % increase in isoprene SOA) and 48 % for SO2 (35 % decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls

    Regional versus local drivers of water quality in the Windermere catchment, Lake District, United Kingdom: the dominant influence of wastewater pollution over the past 200 years

    Get PDF
    Freshwater ecosystems are threatened by multiple anthropogenic stressors acting over different spatial and temporal scales, resulting in toxic algal blooms, reduced water quality and hypoxia. However, while catchment characteristics act as a ‘filter’ modifying lake response to disturbance, little is known of the relative importance of different drivers and possible differentiation in the response of upland remote lakes in comparison to lowland, impacted lakes. Moreover, many studies have focussed on single lakes rather than looking at responses across a set of individual, yet connected lake basins. Here we used sedimentary algal pigments as an index of changes in primary producer assemblages over the last~200 years in a northern temperate watershed consisting of 11 upland and lowland lakes within the Lake District, United Kingdom, to test our hypotheses about landscape drivers. Specifically, we expected that the magnitude of change in phototrophic assemblages would be greatest in lowland rather than upland lakes due to more intensive human activities in the watersheds of the former (agriculture, urbanization). Regional parameters, such as climate dynamics, would be the predominant factors regulating lake primary producers in remote upland lakes and thus, synchronize the dynamic of primary producer assemblages in these basins. We found broad support for the hypotheses pertaining to lowland sites as wastewater treatment was the main predictor of changes to primary producer assemblages in lowland lakes. In contrast, upland headwaters responded weakly to variation in atmospheric temperature, and dynamics in primary producers across upland lakes were asynchronous. Collectively, these findings show that nutrient inputs from point sources overwhelm climatic controls of algae and nuisance cyanobacteria, but highlights that large-scale stressors do not always initiate coherent regional lake response. Furthermore, a lake’s position in its landscape, its connectivity and proximity to point nutrients are important determinants of changes in production and composition of phototrophic assemblages

    Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle

    Get PDF
    Global aquatic ecosystems are under increasing threat from anthropogenic activity, as well as being exposed to past (and projected) climate change, however, the nature of how climate and human impacts are recorded in lake sediments is often ambiguous. Natural and anthropogenic drivers can force a similar response in lake systems, yet the ability to attribute what change recorded in lake sediments is natural, from that which is anthropogenic, is increasingly important for understanding how lake systems have, and will continue to function when subjected to multiple stressors; an issue that is particularly acute when considering management options for aquatic ecosystems. The duration and timing of human impacts on lake systems varies geographically, with some regions of the world (such as Africa and South America) having a longer legacy of human impact than others(e.g. New Zealand). A wide array of techniques (biological, chemical, physical and statistical) is available to palaeolimnologists to allow the deciphering of complex sedimentary records. Lake sediments are an important archive of how drivers have changed through time, and how these impacts manifest in lake systems. With a paucity of ‘real‐time’ data pre‐dating human impact, palaeolimnological archives offer the only insight into both natural variability (i.e. that driven by climate and intrinsic lake processes) and the impact of people. Whilst there is a need to acknowledge complexity, and temporal and spatial variability when deciphering change from sediment archives, a palaeolimnological approach is a powerful tool for better understanding and managing global aquatic resources

    Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US

    Get PDF
    Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with  ∼  25  x  25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50 % of observed RONO2 in surface air, and we find that another 10 % is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10 % of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60 % of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20 % by photolysis to recycle NOx and 15 % by dry deposition. RONO2 production accounts for 20 % of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline

    Glyoxal yield from isoprene oxidation and relation to formaldehyde:chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data

    Get PDF
    Glyoxal (CHOCHO) is produced in the atmosphere by oxidation of volatile organic compounds (VOCs). It is measurable from space by solar backscatter along with formaldehyde (HCHO), another oxidation product of VOCs. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the world. We use aircraft observations of CHOCHO and HCHO from the SENEX campaign over the Southeast US in summer 2013 to better understand the time-dependent yields from isoprene oxidation, their dependences on nitrogen oxides (NOx ≡ NO + NO2), the behaviour of the CHOCHO-HCHO relationship, the quality of OMI satellite observations, and the implications for using satellite CHOCHO observations as constraints on isoprene emission. We simulate the SENEX and OMI observations with the GEOS-Chem chemical transport model featuring a new chemical mechanism for CHOCHO formation from isoprene. The mechanism includes prompt CHOCHO formation under low-NOx conditions following the isomerization of the isoprene peroxy radical (ISOPO2). The SENEX observations provide support for this prompt CHOCHO formation pathway, and are generally consistent with the GEOS-Chem mechanism. Boundary layer CHOCHO and HCHO are strongly correlated in the observations and the model, with some departure under low-NOx conditions due to prompt CHOCHO formation. SENEX vertical profiles indicate a free tropospheric CHOCHO background that is absent from the model. The OMI CHOCHO data provide some support for this free tropospheric background and show Southeast US enhancements consistent with the isoprene source but a factor of 2 too low. Part of this OMI bias is due to excessive surface reflectivities assumed in the retrieval. The OMI CHOCHO and HCHO seasonal data over the Southeast US are tightly correlated and provide redundant proxies of isoprene emission. Higher temporal resolution in future geostationary satellite observations may enable detection of the prompt CHOCHO production under low-NOx conditions apparent in the SENEX data

    The contribution of dynamic stromal remodeling during mammary development to breast carcinogenesis

    Get PDF
    Breast cancer is a heterogeneous disease whose prognosis varies depending upon the developmental stage of the breast tissue at diagnosis. Notably, breast cancers associated with pregnancy exhibit increased rates of metastasis and poorer long-term survival compared to those diagnosed after menopause. However, postmenopausal breast cancers associated with obesity exhibit a more aggressive behavior and confer decreased overall patient survival compared to those diagnosed in non-obese individuals. Since the mammary gland is a dynamic tissue that undergoes significant changes throughout a woman's lifetime, especially during pregnancy and following menopause, we present evidence to support the notion that changes occurring throughout development within the mammary stromal compartment may account for some of the biological differences in breast cancer subtypes and behaviors

    Discordant identification of pediatric severe sepsis by research and clinical definitions in the SPROUT international point prevalence study

    Get PDF
    Introduction: Consensus criteria for pediatric severe sepsis have standardized enrollment for research studies. However, the extent to which critically ill children identified by consensus criteria reflect physician diagnosis of severe sepsis, which underlies external validity for pediatric sepsis research, is not known. We sought to determine the agreement between physician diagnosis and consensus criteria to identify pediatric patients with severe sepsis across a network of international pediatric intensive care units (PICUs). Methods: We conducted a point prevalence study involving 128 PICUs in 26 countries across 6 continents. Over the course of 5 study days, 6925 PICU patients <18 years of age were screened, and 706 with severe sepsis defined either by physician diagnosis or on the basis of 2005 International Pediatric Sepsis Consensus Conference consensus criteria were enrolled. The primary endpoint was agreement of pediatric severe sepsis between physician diagnosis and consensus criteria as measured using Cohen's ?. Secondary endpoints included characteristics and clinical outcomes for patients identified using physician diagnosis versus consensus criteria. Results: Of the 706 patients, 301 (42.6 %) met both definitions. The inter-rater agreement (? ± SE) between physician diagnosis and consensus criteria was 0.57 ± 0.02. Of the 438 patients with a physician's diagnosis of severe sepsis, only 69 % (301 of 438) would have been eligible to participate in a clinical trial of pediatric severe sepsis that enrolled patients based on consensus criteria. Patients with physician-diagnosed severe sepsis who did not meet consensus criteria were younger and had lower severity of illness and lower PICU mortality than those meeting consensus criteria or both definitions. After controlling for age, severity of illness, number of comorbid conditions, and treatment in developed versus resource-limited regions, patients identified with severe sepsis by physician diagnosis alone or by consensus criteria alone did not have PICU mortality significantly different from that of patients identified by both physician diagnosis and consensus criteria. Conclusions: Physician diagnosis of pediatric severe sepsis achieved only moderate agreement with consensus criteria, with physicians diagnosing severe sepsis more broadly. Consequently, the results of a research study based on consensus criteria may have limited generalizability to nearly one-third of PICU patients diagnosed with severe sepsis
    corecore