29 research outputs found

    Subgenual activation and the finger of blame: individual differences and depression vulnerability.

    Get PDF
    BACKGROUND: Subgenual cingulate cortex (SCC) responses to self-blaming emotion-evoking stimuli were previously found in individuals prone to self-blame with and without a history of major depressive disorder (MDD). This suggested SCC activation reflects self-blaming emotions such as guilt, which are central to models of MDD vulnerability. METHOD: Here, we re-examined these hypotheses in an independent larger sample. A total of 109 medication-free participants (70 with remitted MDD and 39 healthy controls) underwent fMRI whilst judging self- and other-blaming emotion-evoking statements. They also completed validated questionnaires of proneness to self-blaming emotions including those related to internal (autonomy) and external (sociotropy) evaluation, which were subjected to factor analysis. RESULTS: An interaction between group (remitted MDD v. Control) and condition (self- v. other-blame) was observed in the right SCC (BA24). This was due to higher SCC signal for self-blame in remitted MDD and higher other-blame-selective activation in Control participants. Across the whole sample, extracted SCC activation cluster averages for self- v. other-blame were predicted by a regression model which included the reliable components derived from our factor analysis of measures of proneness to self-blaming emotions. Interestingly, this prediction was solely driven by autonomy/self-criticism, and adaptive guilt factors, with no effect of sociotropy/dependency. CONCLUSIONS: Despite confirming the prediction of SCC activation in self-blame-prone individuals and those vulnerable to MDD, our results suggest that SCC activation reflects blame irrespective of where it is directed rather than selective for self. We speculate that self-critical individuals have more extended SCC representations for blame in the context of self-agency

    Seasonal pattern of incidence and outcome of acute kidney injury: A national study of Welsh AKI electronic alerts

    Get PDF
    Objectives To identify any seasonal variation in the occurrence of, and outcome following Acute Kidney Injury. Methods The study utilised the biochemistry based AKI electronic (e)-alert system established across the Welsh National Health Service to collect data on all AKI episodes to identify changes in incidence and outcome over one calendar year (1st October 2015 and the 30th September 2016). Results There were total of 48 457 incident AKI alerts. The highest proportion of AKI episodes was seen in the quarter of January to March (26.2%), and the lowest in the quarter of October to December (23.3%, P < .001). The same trend was seen for both community-acquired and hospital-acquired AKI sub-sets. Overall 90 day mortality for all AKI was 27.3%. In contrast with the seasonal trend in AKI occurrence, 90 day mortality after the incident AKI alert was significantly higher in the quarters of January to March and October to December compared with the quarters of April to June and July to September (P < .001) consistent with excess winter mortality reported for likely underlying diseases which precipitate AKI. Conclusions In summary we report for the first time in a large national cohort, a seasonal variation in the incidence and outcomes of AKI. The results demonstrate distinct trends in the incidence and outcome of AKI

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    The role of self-blame and worthlessness in the psychopathology of major depressive disorder

    Get PDF
    AbstractBackgroundCognitive models predict that vulnerability to major depressive disorder (MDD) is due to a bias to blame oneself for failure in a global way resulting in excessive self-blaming emotions, decreased self-worth, hopelessness and depressed mood. Clinical studies comparing the consistency and coherence of these symptoms in order to probe the predictions of the model are lacking.Methods132 patients with remitted MDD and no relevant lifetime co-morbid axis-I disorders were assessed using a phenomenological psychopathology-based interview (AMDP) including novel items to assess moral emotions (n=94 patients) and the structured clinical interview-I for DSM-IV-TR. Cluster analysis was employed to identify symptom coherence for the most severe episode.ResultsFeelings of inadequacy, depressed mood, and hopelessness emerged as the most closely co-occurring and consistent symptoms (≥90% of patients). Self-blaming emotions occurred in most patients (>80%) with self-disgust/contempt being more frequent than guilt, followed by shame. Anger or disgust towards others was experienced by only 26% of patients. 85% of patients reported feelings of inadequacy and self-blaming emotions as the most bothering symptoms compared with 10% being more distressed by negative emotions towards others.LimitationsSymptom assessment was retrospective, but this is unlikely to have biased patients towards particular emotions relative to others.ConclusionsAs predicted, feelings of inadequacy and hopelessness were part of the core depressive syndrome, closely co-occurring with depressed mood. Self-blaming emotions were highly frequent and bothering but not restricted to guilt. This calls for a refined assessment of self-blaming emotions to improve the diagnosis and stratification of MDD

    A novel resting-state functional magnetic resonance imaging signature of resilience to recurrent depression

    No full text
    Background: A high proportion of patients with remitted major depressive disorder (MDD) will experience recurring episodes, whilst some develop resilience and remain in recovery. The neural basis of resilience to recurrence is elusive. Abnormal resting-state connectivity of the subgenual cingulate cortex (sgACC) was previously found in cross-sectional studies of MDD, suggesting its potential pathophysiological importance. The current study aimed to investigate whether resting-state connectivity to a left sgACC seed region distinguishes resilient patients from those developing recurring episodes. Method: A total of 47 medication-free remitted MDD patients and 38 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) at baseline. Over 14 months, 30 patients remained resilient whilst 17 experienced a recurring episode. Results: Attenuated interhemispheric left-to-right sgACC connectivity distinguished the resilient from the recurring-episode and control groups and was not correlated with residual depressive symptoms. Conclusions: The current study revealed a neural signature of resilience to recurrence in MDD and thereby elucidates the role of compensatory adaptation in sgACC networks

    Self-blame-Selective Hyperconnectivity Between Anterior Temporal and Subgenual Cortices and Prediction of Recurrent Depressive Episodes.

    Get PDF
    Importance: Patients with remitted major depressive disorder (MDD) were previously found to display abnormal functional magnetic resonance imaging connectivity (fMRI) between the right superior anterior temporal lobe (RSATL) and the subgenual cingulate cortex and adjacent septal region (SCSR) when experiencing self-blaming emotions relative to emotions related to blaming others (eg, "indignation or anger toward others"). This finding provided the first neural signature of biases toward overgeneralized self-blaming emotions (eg, "feeling guilty for everything"), known to have a key role in cognitive vulnerability to MDD. It is unknown whether this neural signature predicts risk of recurrence, a crucial step in establishing its potential as a prognostic biomarker, which is urgently needed for stratification into pathophysiologically more homogeneous subgroups and for novel treatments. Objective: To use fMRI in remitted MDD at baseline to test the hypothesis that RSATL-SCSR connectivity for self-blaming relative to other-blaming emotions predicts subsequent recurrence of depressive episodes. Design, setting, and participants: A prospective cohort study from June 16, 2011, to October 10, 2014, in a clinical research facility completed by 75 psychotropic medication-free patients with remitted MDD and no relevant comorbidity. In total, 31 remained in stable remission, and 25 developed a recurring episode over the 14 months of clinical follow-up and were included in the primary analysis. Thirty-nine control participants with no personal or family history of MDD were recruited for further comparison. Main outcomes and measures: Between-group difference (recurring vs stable MDD) in RSATL connectivity, with an a priori SCSR region of interest for self-blaming vs other-blaming emotions. Results: We corroborated our hypothesis that during the experience of self-blaming vs other-blaming emotions, RSATL-SCSR connectivity predicted risk of subsequent recurrence. The recurring MDD group showed higher connectivity than the stable MDD group (familywise error-corrected P \u3c .05 over the a priori SCSR region of interest) and the control group. In addition, the recurring MDD group also exhibited RSATL hyperconnectivity with the right ventral putamen and claustrum and the temporoparietal junction. Together, these regions predicted recurrence with 75% accuracy. Conclusions and relevance: To our knowledge, this study is the first to provide a robust demonstration of an fMRI signature of recurrence risk in remitted MDD. Additional studies are needed for its further optimization and validation as a prognostic biomarker

    Subgenual cingulate-amygdala functional disconnection and vulnerability to melancholic depression

    No full text
    The syndromic heterogeneity of major depressive disorder (MDD) hinders understanding of the etiology of predisposing vulnerability traits and underscores the importance of identifying neurobiologically valid phenotypes. Distinctive fMRI biomarkers of vulnerability to MDD subtypes are currently lacking. This study investigated whether remitted melancholic MDD patients, who are at an elevated lifetime risk for depressive episodes, demonstrate distinctive patterns of resting-state connectivity with the subgenual cingulate cortex (SCC), known to be of core pathophysiological importance for severe and familial forms of MDD. We hypothesized that patterns of disrupted SCC connectivity would be a distinguishing feature of melancholia. A total of 63 medication-free remitted MDD (rMDD) patients (33 melancholic and 30 nonmelancholic) and 39 never-depressed healthy controls (HC) underwent resting-state fMRI scanning. SCC connectivity was investigated with closely connected bilateral a priori regions of interest (ROIs) relevant to MDD (anterior temporal, ventromedial prefrontal, dorsomedial prefrontal cortices, amygdala, hippocampus, septal region, and hypothalamus). Decreased (less positive) SCC connectivity with the right parahippocampal gyrus and left amygdala distinguished melancholic rMDD patients from the nonmelancholic rMDD and HC groups (cluster-based familywise error-corrected p⩽0.007 over individual a priori ROIs corresponding to approximate Bonferroni-corrected p⩽0.05 across all seven a priori ROIs). No areas demonstrating increased (more positive) connectivity were observed. Abnormally decreased connectivity of the SCC with the amygdala and parahippocampal gyrus distinguished melancholic from nonmelancholic rMDD. These results provide the first resting-state neural signature distinctive of melancholic rMDD and may reflect a subtype-specific primary vulnerability factor given a lack of association with the number of previous episodes

    Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model

    Get PDF
    Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1(-/-) mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1(-/-) adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1(+/+) mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1(-/-) mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress
    corecore