329 research outputs found

    A modeling sensitivity study of the influence of the Atlantic meridional overturning circulation on neodymium isotopic composition at the Last Glacial Maximum

    Get PDF
    Using a simple parameterisation that resolves the first order global Nd isotopic composition (hereafter expressed as ε<sub>Nd</sub> in an Ocean Global Circulation Model, we have tested the impact of different circulation scenarios on the ε<sub>Nd</sub> in the Atlantic for the Last Glacial Maximum (LGM), relative to a modern control run. Three different LGM freshwater forcing experiments are performed to test for variability in the ε<sub>Nd</sub> oceanic distribution as a function of ocean circulation. Highly distinct representations of the ocean circulation are generated in the three simulations, which drive significant differences in ε<sub>Nd</sub>, particularly in deep waters of the western part of the basin. However, at the LGM, the Atlantic is more radiogenic than in the modern control run, particularly in the Labrador basin and in the Southern Ocean. A fourth experiment shows that changes in Nd sources and bathymetry drive a shift in the ε<sub>Nd</sub> signature of the basin that is sufficient to explain the changes in the ε<sub>Nd</sub> signature of the northern end-member (NADW or GNAIW glacial equivalent) in our LGM simulations. All three of our LGM circulation scenarios show good agreement with the existing intermediate depth ε<sub>Nd</sub> paleo-data. This study cannot indicate the likelihood of a given LGM oceanic circulation scenario, even if simulations with a prominent water mass of southern origin provide the most conclusive results. Instead, our modeling results highlight the need for more data from deep and bottom waters from western Atlantic, where the ε<sub>Nd</sub> change in the three LGM scenarios is the most important (up to 3 ε<sub>Nd</sub>. This would also aid more precise conclusions concerning the evolution of the northern end-member ε<sub>Nd</sub> signature, and thus the potential use of ε<sub>Nd</sub> as a tracer of past oceanic circulation

    Reactivity of neodymium carriers in deep sea sediments: Implications for boundary exchange and paleoceanography

    Get PDF
    The dissolved neodymium (Nd) isotopic distribution in the deep oceans is determined by continental weathering inputs, water mass advection, and boundary exchange between particulate and dissolved fractions. Reconstructions of past Nd isotopic variability may therefore provide evidence on temporal changes in continental weathering inputs and/or ocean circulation patterns over a range of timescales. However, such an approach is limited by uncertainty in the mechanisms and importance of the boundary exchange process, and the challenge in reliably recovering past seawater Nd isotopic composition (εNd) from deep sea sediments. This study addresses these questions by investigating the processes involved in particulate–solution interactions and their impact on Nd isotopes. A better understanding of boundary exchange also has wider implications for the oceanic cycling and budgets of other particle-reactive elements. Sequential acid-reductive leaching experiments at pH ∼2–5 on deep sea sediments from the western Indian Ocean enable us to investigate natural boundary exchange processes over a timescale appropriate to laboratory experiments. We provide evidence that both the dissolution of solid phases and exchange processes influence the εNd of leachates, which suggests that both processes may contribute to boundary exchange. We use major element and rare earth element (REE) data to investigate the pools of Nd that are accessed and demonstrate that sediment leachate εNd values cannot always be explained by admixture between an authigenic component and the bulk detrital component. For example, in core WIND 24B, acid-reductive leaching generates εNd values between −11 and −6 as a function of solution/solid ratios and leaching times, whereas the authigenic components have εNd ≈ −11 and the bulk detrital component has εNd ≈ −15. We infer that leaching in the Mascarene Basin accesses authigenic components and a minor radiogenic volcanic component that is more reactive than Madagascan-derived clays. The preferential mobilisation of such a minor component demonstrates that the Nd released by boundary exchange could often have a significantly different εNd composition than the bulk detrital sediment. These experiments further demonstrate certain limitations on the use of acid-reductive leaching to extract the εNd composition of the authigenic fraction of bulk deep sea sediments. For example, the detrital component may contain a reactive fraction which is also acid-extractible, while the incongruent nature of this dissolution suggests that it is often inappropriate to use the bulk detrital sediment elemental chemistry and/or εNd composition when assessing possible detrital contamination of leachates. Based on the highly systematic controls observed, and evidence from REE patterns on the phases extracted, we suggest two approaches that lead to the most reliable extraction of the authigenic εNd component and good agreement with foraminiferal-based approaches; either (i) leaching of sediments without a prior decarbonation step, or (ii) the use of short leaching times and low solution/solid ratios throughout

    Quantum computation with devices whose contents are never read

    Full text link
    In classical computation, a "write-only memory" (WOM) is little more than an oxymoron, and the addition of WOM to a (deterministic or probabilistic) classical computer brings no advantage. We prove that quantum computers that are augmented with WOM can solve problems that neither a classical computer with WOM nor a quantum computer without WOM can solve, when all other resource bounds are equal. We focus on realtime quantum finite automata, and examine the increase in their power effected by the addition of WOMs with different access modes and capacities. Some problems that are unsolvable by two-way probabilistic Turing machines using sublogarithmic amounts of read/write memory are shown to be solvable by these enhanced automata.Comment: 32 pages, a preliminary version of this work was presented in the 9th International Conference on Unconventional Computation (UC2010

    Enhancement of scattering and reflectance properties of plasma-sprayed alumina coatings by controlling the porosity

    Get PDF
    nombre de pages = 5International audienceThe plasma-spraying process generates materials with typical, porous and complex, microstructures. Inspired by Dielectric Multilayer Mirrors (DMMs), thermal sprayed media may be used in the field of optics, particularly for making scattering and reflecting coatings suitable for a large range of wavelengths. In fact, pores inside plasma sprayed matrix create numerous optical index discontinuities, similarly to the gaps created in DMMs, in order to obtain high reflectivity. The porosity of coatings microstructure can be customized by selection of plasma sprayed process parameters. This study aimed to optimize scattering and reflectance properties in porous alumina by the control of spray parameters resulting in the optimized porosity. A self-supporting bi-layer with a diffuse reflectance over 90% over a large band of wavelengths was obtained. The first layer (micro-structured), which is thick enough to support the free standing, was prepared by atmospheric plasma spraying (APS). The second layer (nanostructured) was manufactured by suspension plasma spraying (SPS) over the first layer in order to enhance the reflectance at short wavelengths

    Can nuclear weapons fallout mark the beginning of the Anthropocene Epoch?

    Get PDF
    Many scientists are making the case that humanity is living in a new geological epoch, the Anthropocene, but there is no agreement yet as to when this epoch began. The start might be defined by a historical event, such as the beginning of the fossil-fueled Industrial Revolution or the first nuclear explosion in 1945. Standard stratigraphic practice, however, requires a more significant, globally widespread, and abrupt signature, and the fallout from nuclear weapons testing appears most suitable. The appearance of plutonium 239 (used in post- 1945 above-ground nuclear weapons tests) makes a good marker: This isotope is rare in nature but a significant component of fallout. It has other features to recommend it as a stable marker in layers of sedimentary rock and soil, including: long half-life, low solubility, and high particle reactivity. It may be used in conjunction with other radioactive isotopes, such as americium 241 and carbon 14, to categorize distinct fallout signatures in sediments and ice caps. On a global scale, the first appearance of plutonium 239 in sedimentary sequences corresponds to the early 1950s. While plutonium is easily detectable over the entire Earth using modern measurement techniques, a site to define the Anthropocene (known as a Ògolden spikeÓ) would ideally be located between 30 and 60 degrees north of the equator, where fallout is maximal, within undisturbed marine or lake environments

    Rapid cognitive decline, one-year institutional admission and one-year mortality: Analysis of the ability to predict and inter-tool agreement of four validated clinical frailty indexes in the safes cohort

    Get PDF
    Objectives: To evaluate the predictive ability of four clinical frailty indexes as regards one-year rapid cognitive decline (RCD — defined as the loss of at least 3 points on the MMSE score), and one-year institutional admission (IA) and mortality respectively; and to measure their agreement for identifying groups at risk of these severe outcomes. Design: One-year follow-up and multicentre study of old patients participating in the SAFEs cohort study. Setting: Nine university hospitals in France. Participants: 1,306 patients aged 75 or older (mean age 85±6 years; 65% female) hospitalized in medical divisions through an Emergency department. Measurements: Four frailty indexes (Winograd; Rockwood; Donini; and Schoevaerdts) reflecting the multidimensionality of the frailty concept, using an ordinal scoring system able to discriminate different grades of frailty, and constructed based on the accumulation of identified deficits after comprehensive geriatric assessment conducted during the first week of hospital stay, were used to categorize participants into three different grades of frailty: Gl — not frail; G2 — moderately frail; and G3 — severely frail. Comparisons between groups were performed using Fisher's exact test. Agreement between indexes was evaluated using Cohen's Kappa coefficient. Results: All patients were classified as frail by at least one of the four indexes. The Winograd and Rockwood indexes mainly classified subjects as G2 (85% and 96%), and the Donini and Schoevaerdts indexes mainly as G3 (71% and 67%). Among the SAFEs cohort population, 250, 1047 and 1,306 subjects were eligible for analyses of predictability for RCD, 1-year IA and 1-year mortality respectively. At 1 year, 84 subjects (34%) experienced RCD, 377 (36%) were admitted into an institutional setting, and 445 (34%) had died With the Rockwood index, all subjects who expenenced RCD were classified in G2; and in G2 and G3 when the Donini and Schoevaerdts indexes were used No significant difference was found between frailty grade and RCD, whereas frailty grade was significantly associated with an increased risk of IA and death, whatever the frailty index considered. Agreement between the different indexes of frailty was poor with Kappa coefficients ranging from −0.02 to 0.15. Conclusion: These findings confirm the poor clinimetric properties of these current indexes to measure frailty, underlining the fact that further work is needed to develop a better and more widely-accepted definition of frailty and therefore a better understanding of its pathophysiolog

    Computing in the fractal cloud: modular generic solvers for SAT and Q-SAT variants

    Full text link
    Abstract geometrical computation can solve hard combinatorial problems efficiently: we showed previously how Q-SAT can be solved in bounded space and time using instance-specific signal machines and fractal parallelization. In this article, we propose an approach for constructing a particular generic machine for the same task. This machine deploies the Map/Reduce paradigm over a fractal structure. Moreover our approach is modular: the machine is constructed by combining modules. In this manner, we can easily create generic machines for solving satifiability variants, such as SAT, #SAT, MAX-SAT

    Coastal Ocean and Shelf-Sea Biogeochemical Cycling of Trace Elements and Isotopes: Lessons Learned from GEOTRACES

    Get PDF
    Continental shelves and shelf seas play a central role in the global carbon cycle. However, their importance with respect to trace element and isotope (TEI) inputs to ocean basins is less well understood. Here, we present major findings on shelf TEI biogeochemistry from the GEOTRACES programme as well as a proof of concept for a new method to estimate shelf TEI fluxes. The case studies focus on advances in our understanding of TEI cycling in the Arctic, transformations within a major river estuary (Amazon), shelf sediment micronutrient fluxes and basin-scale estimates of submarine groundwater discharge. The proposed shelf flux tracer is 228-radium (T1/2 = 5.75 yr), which is continuously supplied to the shelf from coastal aquifers, sediment porewater exchange and rivers. Model-derived shelf 228Ra fluxes are combined with TEI/ 228Ra ratios to quantify ocean TEI fluxes from the western North Atlantic margin. The results from this new approach agree well with previous estimates for shelf Co, Fe, Mn and Zn inputs and exceed published estimates of atmospheric deposition by factors of approximately 3-23. Lastly, recommendations are made for additional GEOTRACES process studies and coastal margin-focused section cruises that will help refine the model and provide better insight on the mechanisms driving shelf-derived TEI fluxes to the ocean.This article is part of the themed issue \u27Biological and climatic impacts of ocean trace element chemistry\u27
    corecore