335 research outputs found

    Modeling the Nd isotopic composition in the North Atlantic basin using an eddy-permitting model

    Get PDF
    International audienceBoundary Exchange (BE – exchange of elementsbetween continental margins and the open ocean) hasbeen emphasized as a key process in the oceanic cycle ofneodymium (Nd) (Lacan and Jeandel, 2005a). Here, we usea regional eddy-permitting resolution Ocean General CirculationModel (1/4) of the North Atlantic basin to simulatethe distribution of the Nd isotopic composition, consideringBE as the only source. Results show good agreementwith the data, confirming previous results obtained using thesame parameterization of the source in a coarse resolutionglobal model (Arsouze et al., 2007), and therefore the majorcontrol played by the BE processes in the Nd cycle onthe regional scale. We quantified the exchange rate of theBE, and found that the time needed for the continental marginsto significantly imprint the chemical composition of thesurrounding seawater (further referred as characteristic exchangetime) is of the order of 0.2 years. However, thetimescale of the BE may be subject to large variations as avery short exchange time (a few days) is needed to reproducethe highly negative values of surface waters in the LabradorSea, whereas a longer one (up to 0.5 years) is required tosimulate the radiogenic influence of basaltic margins and distinguishthe negative isotopic signatures of North AtlanticDeep Water from the more radiogenic southern origin watermasses. This likely represents geographical variations inerosion fluxes and the subsequent particle load onto the continentalmargins. Although the parameterization of the BEis the same in both configurations of the model, the characteristicexchange time in the eddy-permitting configuration issignificantly lower than the previous evaluations using a lowresolution configuration (6 months to 10 years), but howeverin agreement with the available seawater Nd isotope data.This results highlights the importance of the model dynamicsin simulating the BE proces

    Reactivity of neodymium carriers in deep sea sediments: Implications for boundary exchange and paleoceanography

    Get PDF
    The dissolved neodymium (Nd) isotopic distribution in the deep oceans is determined by continental weathering inputs, water mass advection, and boundary exchange between particulate and dissolved fractions. Reconstructions of past Nd isotopic variability may therefore provide evidence on temporal changes in continental weathering inputs and/or ocean circulation patterns over a range of timescales. However, such an approach is limited by uncertainty in the mechanisms and importance of the boundary exchange process, and the challenge in reliably recovering past seawater Nd isotopic composition (εNd) from deep sea sediments. This study addresses these questions by investigating the processes involved in particulate–solution interactions and their impact on Nd isotopes. A better understanding of boundary exchange also has wider implications for the oceanic cycling and budgets of other particle-reactive elements. Sequential acid-reductive leaching experiments at pH ∼2–5 on deep sea sediments from the western Indian Ocean enable us to investigate natural boundary exchange processes over a timescale appropriate to laboratory experiments. We provide evidence that both the dissolution of solid phases and exchange processes influence the εNd of leachates, which suggests that both processes may contribute to boundary exchange. We use major element and rare earth element (REE) data to investigate the pools of Nd that are accessed and demonstrate that sediment leachate εNd values cannot always be explained by admixture between an authigenic component and the bulk detrital component. For example, in core WIND 24B, acid-reductive leaching generates εNd values between −11 and −6 as a function of solution/solid ratios and leaching times, whereas the authigenic components have εNd ≈ −11 and the bulk detrital component has εNd ≈ −15. We infer that leaching in the Mascarene Basin accesses authigenic components and a minor radiogenic volcanic component that is more reactive than Madagascan-derived clays. The preferential mobilisation of such a minor component demonstrates that the Nd released by boundary exchange could often have a significantly different εNd composition than the bulk detrital sediment. These experiments further demonstrate certain limitations on the use of acid-reductive leaching to extract the εNd composition of the authigenic fraction of bulk deep sea sediments. For example, the detrital component may contain a reactive fraction which is also acid-extractible, while the incongruent nature of this dissolution suggests that it is often inappropriate to use the bulk detrital sediment elemental chemistry and/or εNd composition when assessing possible detrital contamination of leachates. Based on the highly systematic controls observed, and evidence from REE patterns on the phases extracted, we suggest two approaches that lead to the most reliable extraction of the authigenic εNd component and good agreement with foraminiferal-based approaches; either (i) leaching of sediments without a prior decarbonation step, or (ii) the use of short leaching times and low solution/solid ratios throughout

    Quantum computation with devices whose contents are never read

    Full text link
    In classical computation, a "write-only memory" (WOM) is little more than an oxymoron, and the addition of WOM to a (deterministic or probabilistic) classical computer brings no advantage. We prove that quantum computers that are augmented with WOM can solve problems that neither a classical computer with WOM nor a quantum computer without WOM can solve, when all other resource bounds are equal. We focus on realtime quantum finite automata, and examine the increase in their power effected by the addition of WOMs with different access modes and capacities. Some problems that are unsolvable by two-way probabilistic Turing machines using sublogarithmic amounts of read/write memory are shown to be solvable by these enhanced automata.Comment: 32 pages, a preliminary version of this work was presented in the 9th International Conference on Unconventional Computation (UC2010

    Imprint of a dissolved cobalt basaltic source on the Kerguelen Plateau

    Get PDF
    International audienceProcesses of cobalt (Co) entrainment from shelf sediments over the Kerguelen Plateau were studied during the KEOPS (Kerguelen Ocean Plateau compared Study) in order to explain the exceptionally high dissolved cobalt concentrations that have been measured in the surface waters above the Kerguelen Plateau, and in intermediate and deep waters above its eastern slope. Lateral advection and dissolution of Co contained in basalt sediments around Heard Island, a main source of lithogenic Co in the study area, were shown to imprint the process of surface enrichment over the plateau. Dissolved Co enrichment was strongest at the intercept of the eastern slope with intermediate and deep waters, probably due to more efficient mobilisation of the sediments in the slope current, in addition to advection of Co-enriched and low-oxygenated ocean water masses. In surface waters, the strong sedimentary Co inputs were estimated to be much higher than biological Co uptake in phytoplankton blooms, underlining the potential use of dissolved cobalt as tracer of the natural iron fertilization above the Kerguelen Plateau. Based on a simple steady-state balance equation of the external input of dissolved iron over the plateau, the fertilization of iron inferred by using dissolved Co as a tracer of basalt sources is estimated to be 28 × 102 ± 21 × 102 t yr−1 in surface waters of the Kerguelen Plateau. This estimate is consistent with preceding ones (Zhang et al., 2008; Chever et al., 2010), and the calculated iron supply matches with the phytoplankton demand (Sarthou et al., 2008)

    Early Effect Markers and Exposure Determinants of Metalworking Fluids Among Metal Industry Workers: Protocol for a Field Study.

    Get PDF
    Exposure to aerosols from metalworking fluids (MWF) has previously been related to a series of adverse health outcomes (eg, cancer, respiratory diseases). Our present epidemiological study focuses on occupational exposures to MWF and a panel of exposure and effect biomarkers. We hypothesize that these health outcomes are caused by particle exposure that generates oxidative stress, leading to airway inflammation and ultimately to chronic respiratory diseases. We aimed to assess whether MWF exposure, in particular as characterized by its oxidative potential, is associated with biomarkers of oxidative stress and inflammation as well as genotoxic effects. The ultimate goal is to develop exposure reduction strategies based on exposure determinants that best predict MWF-related health outcomes. The following relationships will be explored: (1) exposure determinants and measured exposure; (2) occupational exposure and preclinical and clinical effect markers; (3) exposure biomarkers and biomarkers of effect in both exhaled breath condensate and urine; and (4) biomarkers of effect, genotoxic effects and respiratory symptoms. At least 90 workers from France and Switzerland (30 controls, 30 exposed to straight MWF and 30 to aqueous MWF) were followed over three consecutive days after a nonexposed period of at least two days. The exposure assessment is based on MWF, metal, aldehyde, and ultrafine particle number concentrations, as well as the intrinsic oxidative potential of aerosols. Furthermore, exposure biomarkers such as metals, metabolites of polycyclic aromatic hydrocarbons and nitrosamine are measured in exhaled breath condensate and urine. Oxidative stress biomarkers (malondialdehyde, 8-isoprostane, 8-hydroxy-2'-deoxyguanosine, nitrates, and nitrites) and exhaled nitric oxide, an airway inflammation marker, are repeatedly measured in exhaled breath condensate and urine. Genotoxic effects are assessed using the buccal micronucleus cytome assay. The statistical analyses will include modelling exposure as a function of exposure determinants, modelling the evolution of the biomarkers of exposure and effect as a function of the measured exposure, and modelling respiratory symptoms and genotoxic effects as a function of the assessed long-term exposure. Data collection, which occurred from January 2018 until June 2019, included 20 companies. At the date of writing, the study included 100 subjects and 29 nonoccupationally exposed controls. This study is unique as it comprises human biological samples, questionnaires, and MWF exposure measurement. The biomarkers collected in our study are all noninvasive and are useful in monitoring MWF exposed workers. The aim is to develop preventative strategies based on exposure determinants related to health outcomes. DERR1-10.2196/13744

    Coastal Ocean and Shelf-Sea Biogeochemical Cycling of Trace Elements and Isotopes: Lessons Learned from GEOTRACES

    Get PDF
    Continental shelves and shelf seas play a central role in the global carbon cycle. However, their importance with respect to trace element and isotope (TEI) inputs to ocean basins is less well understood. Here, we present major findings on shelf TEI biogeochemistry from the GEOTRACES programme as well as a proof of concept for a new method to estimate shelf TEI fluxes. The case studies focus on advances in our understanding of TEI cycling in the Arctic, transformations within a major river estuary (Amazon), shelf sediment micronutrient fluxes and basin-scale estimates of submarine groundwater discharge. The proposed shelf flux tracer is 228-radium (T1/2 = 5.75 yr), which is continuously supplied to the shelf from coastal aquifers, sediment porewater exchange and rivers. Model-derived shelf 228Ra fluxes are combined with TEI/ 228Ra ratios to quantify ocean TEI fluxes from the western North Atlantic margin. The results from this new approach agree well with previous estimates for shelf Co, Fe, Mn and Zn inputs and exceed published estimates of atmospheric deposition by factors of approximately 3-23. Lastly, recommendations are made for additional GEOTRACES process studies and coastal margin-focused section cruises that will help refine the model and provide better insight on the mechanisms driving shelf-derived TEI fluxes to the ocean.This article is part of the themed issue \u27Biological and climatic impacts of ocean trace element chemistry\u27

    Abnormal T-cell phenotype in episodic angioedema with hypereosinophilia (Gleich's syndrome): frequency, clinical implication and prognosis

    Get PDF
    BACKGROUND: Episodic Angioedema with eosinophilia (EAE, Gleich\u27s syndrome) is a rare disorder consisting of recurrent episodes of angioedema, hypereosinophilia and frequent elevated serum Immunoglobin M. METHODS: We conducted a retrospective multicenter nationwide study regarding the clinical spectrum and therapeutic management of patients with EAE in France. RESULTS: Thirty patients were included with a median age at diagnosis of 41 years [5-84]. The median duration of each crisis was 5.5 days [1-90] with swelling affecting mainly the face and the upper limbs. Total serum IgM levels were increased in 20 patients (67%). Abnormal T-cell immunophenotypes were detected in 12 patients (40%) among which 5 (17%) showed evidence of clonal TCR γ gene rearrangement. Median follow-up duration was 53 months [31-99]. The presence of an abnormal T-cell population was the sole factor associated with a shorter time to flare (hazard ratio 4.15 [CI 95% 1.18-14.66; p=0.02). At last follow-up, 3 patients (10%) were able to withdraw all treatments and 11 (37%) were in clinical and biological remission with less than 10 mg of daily prednisone. CONCLUSION: EAE is a heterogeneous condition that encompasses several disease forms. Although patients usually respond well to glucocorticoids, those with evidence of abnormal T-cell phenotype have a shorter time to flare

    Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene–Miocene transition

    Get PDF
    Dissolved and particulate neodymium (Nd) are mainly supplied to the oceans via rivers, dust, and release from marine sediments along continental margins. This process, together with the short oceanic residence time of Nd, gives rise to pronounced spatial gradients in oceanic 143Nd/144Nd ratios (εNd). However, we do not yet have a good understanding of the extent to which the influence of riverine point-source Nd supply can be distinguished from changes in mixing between different water masses in the marine geological record. This gap in knowledge is important to fill because there is growing awareness that major global climate transitions may be associated not only with changes in large-scale ocean water mass mixing, but also with important changes in continental hydroclimate and weathering. Here we present εNd data for fossilised fish teeth, planktonic foraminifera, and the Fe–Mn oxyhydroxide and detrital fractions of sediments recovered from Ocean Drilling Project (ODP) Site 926 on Ceara Rise, situated approximately 800 km from the mouth of the River Amazon. Our records span the Mi-1 glaciation event during the Oligocene–Miocene transition (OMT; ∼23 Ma). We compare our εNd records with data for ambient deep Atlantic northern and southern component waters to assess the influence of particulate input from the Amazon River on Nd in ancient deep waters at this site. εNd values for all of our fish teeth, foraminifera, and Fe–Mn oxyhydroxide samples are extremely unradiogenic (εNd ≈ −15); much lower than the εNd for deep waters of modern or Oligocene–Miocene age from the North Atlantic (εNd ≈ −10) and South Atlantic (εNd ≈ −8). This finding suggests that partial dissolution of detrital particulate material from the Amazon (εNd ≈ −18) strongly influences the εNd values of deep waters at Ceara Rise across the OMT. We conclude that terrestrially derived inputs of Nd can affect εNd values of deep water many hundreds of kilometres from source. Our results both underscore the need for care in reconstructing changes in large-scale oceanic water-mass mixing using sites proximal to major rivers, and highlight the potential of these marine archives for tracing changes in continental hydroclimate and weathering
    corecore