82 research outputs found

    Surface Smoothing: A Way Back in Early Brain

    Get PDF
    Abstract. In this article we propose to investigate the analogy between early cortical folding process and cortical smoothing by mean curvature flow. First, we introduce a one-parameter model that is able to fit a developmental trajectory as represented in a Volume-Area plot and we propose an efficient optimization strategy for parameter estimation. Second, we validate the model on forty cortical surfaces of preterm newborns by comparing global geometrical indices and trajectories of central sulcus along developmental and simulation time.

    Vers une réutilisabilité totale des algorithmes de traitement d'images

    Get PDF
    Cet article présente l'évolution des techniques de programmation d'algorithmes de traitement d'images et discute des limites de la réutilisabilité de ces algorithmes. En particulier, nous montrons qu'en C++ un algorithme peut s'écrire sous une forme générale, indépendante aussi bien du type des données que du type des structures de données sur lesquelles il peut s'appliquer. Une réutilisabilité totale des algorithmes peut donc être obtenue ; mieux, leur écriture est plus naturelle et elle n'introduit pas de surcoût significatif en temps d'exécution

    Opto-thermo-mechanical numerical simulations of 3 different concepts of infrared achromatic phase shifters

    Get PDF
    The Darwin/TPF mission aims at detecting directly extra solar planets. It is based on the nulling interferometry, concept proposed by Bracewell in 1978, and developed since 1995 in several European and American laboratories. One of the key optical devices for this technique is the achromatic phase shifter (APS). This optical component is designed to produce a π phase shift over the whole Darwin spectral range (i.e. 6-18 μm), and will be experimentally tested on the NULLTIMATE consortium nulling test bench (Labèque et al). Three different concepts of APS are being simulated: dispersive plates focus crossing and field reversal. In this paper, we show how thermal, mechanical and optical models are merged into a single robust model, allowing a global numerical simulation of the optical component performances. We show how these simulations help us to optimizing the design and present results of the numerical model

    A bipolar taxonomy of adult human brain sulcal morphology related to timing of fetal sulcation and trans-sulcal gene expression gradients

    Get PDF
    We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (N=34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bipolar distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex; complex sulci were less heritable and typically located in heteromodal cortex. Aligning these results with an independent fetal brain MRI cohort (N=228; 21-36 gestational weeks), we found that linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Using high-resolution maps of cortical gene expression, we found that linear sulcation is mechanistically underpinned by trans-sulcal gene expression gradients enriched for developmental processes.</p

    French Roadmap for complex Systems 2008-2009

    Get PDF
    This second issue of the French Complex Systems Roadmap is the outcome of the Entretiens de Cargese 2008, an interdisciplinary brainstorming session organized over one week in 2008, jointly by RNSC, ISC-PIF and IXXI. It capitalizes on the first roadmap and gathers contributions of more than 70 scientists from major French institutions. The aim of this roadmap is to foster the coordination of the complex systems community on focused topics and questions, as well as to present contributions and challenges in the complex systems sciences and complexity science to the public, political and industrial spheres

    Structural basis of envelope and phase intrinsic coupling modes in the cerebral cortex

    Get PDF
    Intrinsic coupling modes (ICMs) can be observed in ongoing brain activity at multiple spatial and temporal scales. Two families of ICMs can be distinguished: phase and envelope ICMs. The principles that shape these ICMs remain partly elusive, in particular their relation to the underlying brain structure. Here we explored structure-function relationships in the ferret brain between ICMs quantified from ongoing brain activity recorded with chronically implanted micro-ECoG arrays and structural connectivity (SC) obtained from high-resolution diffusion MRI tractography. Large-scale computational models were used to explore the ability to predict both types of ICMs. Importantly, all investigations were conducted with ICM measures that are sensitive or insensitive to volume conduction effects. The results show that both types of ICMs are significantly related to SC, except for phase ICMs when using measures removing zero-lag coupling. The correlation between SC and ICMs increases with increasing frequency which is accompanied by reduced delays. Computational models produced results that were highly dependent on the specific parameter settings. The most consistent predictions were derived from measures solely based on SC. Overall, the results demonstrate that patterns of cortical functional coupling as reflected in both phase and envelope ICMs are both related, albeit to different degrees, to the underlying structural connectivity in the cerebral cortex.This work was supported by funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - SFB 936 - 178316478 - A1 (C.C.H.), A2 (A.K.E.), and Z3 (C.C.H. and A.M.), SPP1665 - 220176618 - EN533/13-1 (A.K.E.), SPP2041 - 313856816 - HI1286/6-1 (C.C.H.) and EN533/15-1 (A.K.E.), from the European Unions Horizon 2020 Framework Programme for Research and Innovation under Specific Grant Agreements 785907 and 945539 (Human Brain Project SGA2 and SGA3, C.C.H.), and from the 2015 FLAG-ERA Joint Transnational Call for project FIIND - ANR-15-HBPR-0005 (R.T.).Peer reviewe

    Diabetes Mellitus and Cognition: A Pathway Analysis in the MEMENTO Cohort

    Get PDF
    OBJECTIVE: To assess the role of biomarkers of Alzheimer's Disease (AD), neurodegeneration and small vessel disease (SVD) as mediators in the association between diabetes mellitus and cognition. METHODS: The study sample was derived from MEMENTO, a cohort of French adults recruited in memory clinics and screened for either isolated subjective cognitive complaints or mild cognitive impairment. Diabetes was defined based on blood glucose assessment, use of antidiabetic agent or self-report. We used structural equation modelling to assess whether latent variables of AD pathology (PET mean amyloid uptake, Aβ(42)/Aβ(40) ratio and CSF phosphorylated tau), SVD (white matter hyperintensities volume and visual grading), and neurodegeneration (mean cortical thickness, brain parenchymal fraction, hippocampal volume, and mean fluorodeoxyglucose uptake) mediate the association between diabetes and a latent variable of cognition (five neuropsychological tests), adjusting for potential confounders. RESULTS: There were 254 (11.1%) participants with diabetes among 2,288 participants (median age 71.6 years; 61.8% women). The association between diabetes and lower cognition was significantly mediated by higher neurodegeneration (standardized indirect effect: -0.061, 95% confidence interval: -0.089; -0.032), but not mediated by SVD and AD markers. Results were similar when considering latent variables of memory or executive functioning. CONCLUSION: In a large clinical cohort in the elderly, diabetes is associated with lower cognition through neurodegeneration, independently of SVD and AD biomarkers

    Associations among hypertension, dementia biomarkers, and cognition: The MEMENTO cohort

    Get PDF
    Introduction Approximately 40% of dementia cases could be delayed or prevented acting on modifiable risk factors including hypertension. However, the mechanisms underlying the hypertension–dementia association are still poorly understood. Methods We conducted a cross-sectional analysis in 2048 patients from the MEMENTO cohort, a French multicenter clinic-based study of outpatients with either isolated cognitive complaints or mild cognitive impairment. Exposure to hypertension was defined as a combination of high blood pressure (BP) status and antihypertensive treatment intake. Pathway associations were examined through structural equation modeling integrating extensive collection of neuroimaging biomarkers and clinical data. Results Participants treated with high BP had significantly lower cognition compared to the others. This association was mediated by higher neurodegeneration and higher white matter hyperintensities load but not by Alzheimer's disease (AD) biomarkers. Discussion These results highlight the importance of controlling hypertension for prevention of cognitive decline and offer new insights on mechanisms underlying the hypertension–dementia association. Highlights Paths of hypertension–cognition association were assessed by structural equation models. The hypertension–cognition association is not mediated by Alzheimer's disease biomarkers. The hypertension–cognition association is mediated by neurodegeneration and leukoaraiosis. Lower cognition was limited to participants treated with uncontrolled blood pressure. Blood pressure control could contribute to promote healthier brain aging.Stopping cognitive decline and dementia by fighting covert cerebral small vessel diseas

    Science Forum: Consensus-based guidance for conducting and reporting multi-analyst studies

    Get PDF
    Any large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research

    Consensus-based guidance for conducting and reporting multi-analyst studies

    Get PDF
    International audienceAny large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research
    corecore