180 research outputs found

    Association of β-Amyloid Burden With Sleep Dysfunction and Cognitive Impairment in Elderly Individuals With Cognitive Disorders.

    Get PDF
    Importance: Evidence shows that sleep dysfunction and β-amyloid (Aβ) deposition work synergistically to impair brain function in individuals with normal cognition, increasing the risk of developing dementia later in life. However, whether Aβ continues to play an integral role in sleep dysfunction after the onset of cognitive decline in individuals with dementia is unclear. Objective: To determine whether Aβ deposition in the brain is associated with subjective measures of sleep quality and cognition in elderly individuals with cognitive disorders. Design, Setting, and Participants: A nested survey study was conducted at the Cognitive Disorders and Comprehensive Alzheimer Disease Center of Thomas Jefferson University Hospital in Philadelphia, Pennsylvania. Participants included patients aged 65 years and older with cognitive disorders verified by neuropsychological testing. Eligible participants were identified from a referral center-based sample of patients who underwent fluorine 18-labeled florbetaben positron emission tomography imaging at Thomas Jefferson University Hospital as part of the multicenter Imaging Dementia-Evidence for Amyloid Scanning study. Data collection and analysis occurred between November 2018 and March 2019. Main Outcomes and Measures: Sleep quality was measured via responses to sleep questionnaires, Aβ deposition was measured via fluorine 18-labeled florbetaben positron emission tomography, and cognition was measured via Mini-Mental State Examination (MMSE) performance. Results: Of the 67 eligible participants, 52 (77.6%) gave informed consent to participate in the study. Of the 52 enrolled participants (mean [SD] age, 76.6 [7.4] years), 27 (51.9%) were women. Daytime sleepiness was associated with Aβ deposition in the brainstem (B = 0.0063; 95% CI, 0.001 to 0.012; P = .02), but not MMSE performance (B = -0.01; 95% CI, -0.39 to 0.37; P = .96). The number of nocturnal awakenings was associated with Aβ deposition in the precuneus (B = 0.11; 95% CI, 0.06 to 0.17; P \u3c .001) and poor MMSE performance (B = -2.13; 95% CI, -3.13 to -1.13; P \u3c .001). Mediation analysis demonstrated an indirect association between Aβ deposition and poor MMSE performance that relied on nocturnal awakenings as an intermediary (B = -3.99; 95% CI, -7.88 to -0.83; P = .01). Conclusions and Relevance: Nighttime sleep disruption may mediate the association between Aβ and cognitive impairment, suggesting that there is an underlying sleep-dependent mechanism that links Aβ burden in the brain to cognitive decline. Further elucidation of this mechanism may improve understanding of disease processes associated with Aβ accumulation

    Investigation, Modeling, and Analysis of Integrated Metroplex Arrival and Departure Coordination Concepts

    Get PDF
    This work involves the development of a concept that enhances integrated metroplex arrival and departure coordination, determines the temporal (the use of time separation for aircraft sharing the same airspace resources) and spatial (the use of different routes or vertical profiles for aircraft streams at any given time) impact of metroplex traffic coordination within the National Airspace System (NAS), and quantifies the benefits of the most desirable metroplex traffic coordination concept. Researching and developing metroplex concepts is addressed in this work that broadly applies across the range of airspace and airport demand characteristics envisioned for NextGen metroplex operations. The objective of this work is to investigate, formulate, develop models, and analyze an operational concept that mitigates issues specific to the metroplex or that takes advantage of unique characteristics of metroplex airports to improve efficiencies. The concept is an innovative approach allowing the NAS to mitigate metroplex interdependencies between airports, optimize metroplex arrival and departure coordination among airports, maximize metroplex airport throughput, minimize delay due to airport runway configuration changes, increase resiliency to disruptions, and increase the tolerance of the system to degrade gracefully under adverse conditions such as weather, traffic management initiatives, and delays in general

    Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface

    Get PDF
    Oxidative stress is a pathogenic feature in vitreoretinal disease. However, the ability of the inner retina to manage metabolic waste and oxidative stress is unknown. Proteomic analysis of antioxidants in the human vitreous, the extracellular matrix opposing the inner retina, identified superoxide dismutase-3 (SOD3) that localized to a unique matrix structure in the vitreous base and cortex. To determine the role of SOD3, Sod3-/- mice underwent histological and clinical phenotyping. Although the eyes were structurally normal, at the vitreoretinal interface Sod3-/- mice demonstrated higher levels of 3-nitrotyrosine, a key marker of oxidative stress. Pattern electroretinography also showed physiological signaling abnormalities within the inner retina. Vitreous biopsies and epiretinal membranes collected from patients with diabetic vitreoretinopathy (DVR) and a mouse model of DVR showed significantly higher levels of nitrates and/or 3-nitrotyrosine oxidative stress biomarkers suggestive of SOD3 dysfunction. This study analyzes the molecular pathways that regulate oxidative stress in human vitreous substructures. The absence or dysregulation of the SOD3 antioxidant at the vitreous base and cortex results in increased oxidative stress and tissue damage to the inner retina, which may underlie DVR pathogenesis and other vitreoretinal diseases

    Defining Ecological Drought for the Twenty-First Century

    Get PDF
    THE RISING RISK OF DROUGHT. Droughts of the twenty-first century are characterized by hotter temperatures, longer duration, and greater spatial extent, and are increasingly exacerbated by human demands for water. This situation increases the vulnerability of ecosystems to drought, including a rise in drought-driven tree mortality globally (Allen et al. 2015) and anticipated ecosystem transformations from one state to another—for example, forest to a shrubland (Jiang et al. 2013). When a drought drives changes within ecosystems, there can be a ripple effect through human communities that depend on those ecosystems for critical goods and services (Millar and Stephenson 2015). For example, the “Millennium Drought” (2002–10) in Australia caused unanticipated losses to key services provided by hydrological ecosystems in the Murray–Darling basin—including air quality regulation, waste treatment, erosion prevention, and recreation. The costs of these losses exceeded AUD $800 million, as resources were spent to replace these services and adapt to new drought-impacted ecosystems (Banerjee et al. 2013). Despite the high costs to both nature and people, current drought research, management, and policy perspectives often fail to evaluate how drought affects ecosystems and the “natural capital” they provide to human communities. Integrating these human and natural dimensions of drought is an essential step toward addressing the rising risk of drought in the twenty-first century

    CyclinPred: A SVM-Based Method for Predicting Cyclin Protein Sequences

    Get PDF
    Functional annotation of protein sequences with low similarity to well characterized protein sequences is a major challenge of computational biology in the post genomic era. The cyclin protein family is once such important family of proteins which consists of sequences with low sequence similarity making discovery of novel cyclins and establishing orthologous relationships amongst the cyclins, a difficult task. The currently identified cyclin motifs and cyclin associated domains do not represent all of the identified and characterized cyclin sequences. We describe a Support Vector Machine (SVM) based classifier, CyclinPred, which can predict cyclin sequences with high efficiency. The SVM classifier was trained with features of selected cyclin and non cyclin protein sequences. The training features of the protein sequences include amino acid composition, dipeptide composition, secondary structure composition and PSI-BLAST generated Position Specific Scoring Matrix (PSSM) profiles. Results obtained from Leave-One-Out cross validation or jackknife test, self consistency and holdout tests prove that the SVM classifier trained with features of PSSM profile was more accurate than the classifiers based on either of the other features alone or hybrids of these features. A cyclin prediction server- CyclinPred has been setup based on SVM model trained with PSSM profiles. CyclinPred prediction results prove that the method may be used as a cyclin prediction tool, complementing conventional cyclin prediction methods

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Food webs: reconciling the structure and function of biodiversity

    Full text link
    The global biodiversity crisis concerns not only unprecedented loss of species within communities, but also related consequences for ecosystem function. Community ecology focuses on patterns of species richness and community composition, whereas ecosystem ecology focuses on fluxes of energy and materials. Food webs provide a quantitative framework to combine these approaches and unify the study of biodiversity and ecosystem function. We summarise the progression of food-web ecology and the challenges in using the food-web approach. We identify five areas of research where these advances can continue, and be applied to global challenges. Finally, we describe what data are needed in the next generation of food-web studies to reconcile the structure and function of biodiversity.No Full Tex

    Strong Carbon Features and a Red Early Color in the Underluminous Type Ia SN 2022xkq

    Full text link
    We present optical, infrared, ultraviolet, and radio observations of SN 2022xkq, an underluminous fast-declining type Ia supernova (SN Ia) in NGC 1784 (D31\mathrm{D}\approx31 Mpc), from <1<1 to 180 days after explosion. The high-cadence observations of SN 2022xkq, a photometrically transitional and spectroscopically 91bg-like SN Ia, cover the first days and weeks following explosion which are critical to distinguishing between explosion scenarios. The early light curve of SN 2022xkq has a red early color and exhibits a flux excess which is more prominent in redder bands; this is the first time such a feature has been seen in a transitional/91bg-like SN Ia. We also present 92 optical and 19 near-infrared (NIR) spectra, beginning 0.4 days after explosion in the optical and 2.6 days after explosion in the NIR. SN 2022xkq exhibits a long-lived C I 1.0693 μ\mum feature which persists until 5 days post-maximum. We also detect C II λ\lambda6580 in the pre-maximum optical spectra. These lines are evidence for unburnt carbon that is difficult to reconcile with the double detonation of a sub-Chandrasekhar mass white dwarf. No existing explosion model can fully explain the photometric and spectroscopic dataset of SN 2022xkq, but the considerable breadth of the observations is ideal for furthering our understanding of the processes which produce faint SNe Ia.Comment: 38 pages, 16 figures, accepted for publication in ApJ, the figure 15 input models and synthetic spectra are now available at https://zenodo.org/record/837925
    corecore