20 research outputs found

    Integration of a Frost Mortality Scheme Into the Demographic Vegetation Model FATES

    Get PDF
    Frost is damaging to plants when air temperature drops below their tolerance threshold. The set of mechanisms used by cold-tolerant plants to withstand freezing is called “hardening” and typically take place in autumn to protect against winter damage. The recent incorporation of a hardening scheme in the demographic vegetation model FATES opens up the possibility to investigate frost mortality to vegetation. Previously, the hardening scheme was used to improve hydraulic processes in cold-tolerant plants. In this study, we expand upon the existing hardening scheme by implementing hardiness-dependent frost mortality into CLM5.0-FATES to study the impacts of frost on vegetation in temperate and boreal sites from 1950 to 2015. Our results show that the original freezing mortality approach of FATES, where each plant type had a fixed freezing tolerance threshold—an approach common to many other dynamic vegetation models, was restricted to predicting plant type distribution. The main results emerging from the new scheme are a high autumn and spring frost mortality, especially at colder sites, and increasing mid-winter frost mortality due to global warming, especially at warmer sites. We demonstrate that the new frost scheme is a major step forward in dynamically representing vegetation in ESMs by for the first time including a level of frost tolerance that is responding to the environment and includes some level of cost (implicitly) and benefit. By linking hardening and frost mortality in a land surface model, we open new ways to explore the impact of frost events in the context of global warming.publishedVersio

    The Nature Index: A General Framework for Synthesizing Knowledge on the State of Biodiversity

    Get PDF
    The magnitude and urgency of the biodiversity crisis is widely recognized within scientific and political organizations. However, a lack of integrated measures for biodiversity has greatly constrained the national and international response to the biodiversity crisis. Thus, integrated biodiversity indexes will greatly facilitate information transfer from science toward other areas of human society. The Nature Index framework samples scientific information on biodiversity from a variety of sources, synthesizes this information, and then transmits it in a simplified form to environmental managers, policymakers, and the public. The Nature Index optimizes information use by incorporating expert judgment, monitoring-based estimates, and model-based estimates. The index relies on a network of scientific experts, each of whom is responsible for one or more biodiversity indicators. The resulting set of indicators is supposed to represent the best available knowledge on the state of biodiversity and ecosystems in any given area. The value of each indicator is scaled relative to a reference state, i.e., a predicted value assessed by each expert for a hypothetical undisturbed or sustainably managed ecosystem. Scaled indicator values can be aggregated or disaggregated over different axes representing spatiotemporal dimensions or thematic groups. A range of scaling models can be applied to allow for different ways of interpreting the reference states, e.g., optimal situations or minimum sustainable levels. Statistical testing for differences in space or time can be implemented using Monte-Carlo simulations. This study presents the Nature Index framework and details its implementation in Norway. The results suggest that the framework is a functional, efficient, and pragmatic approach for gathering and synthesizing scientific knowledge on the state of biodiversity in any marine or terrestrial ecosystem and has general applicability worldwide

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Knopper i knipper

    Get PDF

    Lavere lav både høyt og lavt

    Get PDF

    Knopper i knipper

    No full text

    Kvalitetsheving og rekartlegging av skoglokaliteter i Tromsø kommune, Troms

    Get PDF
    © Norsk institutt for naturforskning. Publikasjonen kan siteres fritt med kildeangivelseBjerke, J.W. 2018. Kvalitetsheving og rekartlegging av skoglokaliteter i Tromsø kommune, Troms. NINA Rapport 1430. Norsk institutt for naturforskning. Miljødirektoratet ønsker å heve kvaliteten for datasett for skognatur i Naturbasen. I den forbin-delse ble NINA engasjert av Fylkesmannen i Troms for å rekartlegge utvalgte skoglokaliteter i fylket som ligger i Naturbasen. I denne utredninga vurderer vi naturtyper og naturverdi av 24 lokaliteter i Tromsø kommune som ligger i Naturbase med mangelfulle opplysninger. De oppda-terte vurderingene baserer seg på feltbefaringer utført i 2016 og 2017, samt annen tilgjengelig informasjon. Fire av de befarte områdene er vurdert å være av regional verdi (B). Disse er Tønsvikelva 1, Lamåsen-Kalvebakken, Koven-Balsnes og Andersdalen. De øvrige tjue befarte områdene er vurdert å være av lokal verdi. Disse er Skittenelvdalen, Oldervikelva, Lyfjorddalen, Lyfjordelva, Grønnåsen, Grønnåsen hoppbakken, Langneshågen, Storskogen, Storhaugen, Skjellstonghaugen 2, Hungeren-Sollia, Lindrupsenstykket, Håkøybotn, Bjørnskarddalen, Straumsbukta, Sørfjorddalen, Vollelva i Straumsbukta, Vettheiåsen-Hella, Bentsjord 2 og Sør-botnelva. I sammenheng med befaring av Håkøybotn (dvs. Nordelva), ble også skogen langs Sørelva i Håkøybotn befart. Denne vurderes å være av regional verdi. Vi foreslår betydelige endringer i avgrensing av lokalitetene. De foreslåtte avgrensingene har som mål å følge naturlige grenser i landskapet, utelate områder med betydelige menneskelige inngrep (f.eks. kraftgater, bygninger og granplantasjer), og forbedre arronderinga ved å strekke arealet for skogslier opp til tregrensa. Jarle W

    Konsekvensutredning Natur-miljø E6 Olsborg – Heia. Delstrekning 3: fra Skardelvbrua til avkjør-sel Fylkesveg 296 ved Myre

    Get PDF
    Jacobsen, K.-O.& Bjerke, J.W. 2016. Konsekvensutredning Naturmiljø E6 Olsborg – Heia. Delstrekning 3: fra Skardelvbrua til avkjørsel Fylkesveg 296 ved Myre – NINA Kortrapport 19. 24 s. NINA har vurdert konsekvensene av Statens vegvesen sine planlagte tiltak for E6 på strekningen fra Skardelvbrua i Målselv kommune til avkjørsel for Fylkesvei 296 ved Myre mot Sagelvvatn i Balsfjord kommune. Dette involverer bl.a. tiltak i tidligere registrerte lokaliteter som Hompen Vest, Fjellvatnet ved Heia og Kvilarvatnet. Planområdet rommer stedvis naturtyper av svakt lokal verdi, men er generelt sterkt påvirket av eksisterende inngrep og forstyrrelser. Fuglelivet på de beskrevne lokalitetene er allerede habi-tuert til trafikk, menneskelig aktivitet på rasteplassen på Heia og hyttene ved de fleste av vat-nene. Vi anser de planlagte inngrepene å være av såpass lite omfang at lokalitetene ikke vil bli forringet i forhold til artsmangfoldet. Kvilarvatnet har de størst viltverdiene. Ved dette vannet bør det vurderes å ikke gjennomføre anleggsarbeid i perioden 15. mai – 15. juli. Vi foreslår også at eldre furutrær og gadder forblir urørt i størst mulig grad og at stedegen vegkantflora benyttes til etablering av vegetasjonsdekket i nye vegkanter.© Norsk institutt for naturforskning. Publikasjonen kan siteres fritt med kildeangivelse
    corecore