54 research outputs found

    Metabolic regulation of APOBEC-1 Complementation Factor trafficking in mouse models of obesity and its positive correlation with the expression of ApoB protein in hepatocytes

    Get PDF
    AbstractAPOBEC-1 Complementation Factor (ACF) is an RNA-binding protein that interacts with apoB mRNA to support RNA editing. ACF traffics between the cytoplasm and nucleus. It is retained in the nucleus in response to elevated serum insulin levels where it supports enhanced apoB mRNA editing. In this report we tested whether ACF may have the ability to regulate nuclear export of apoB mRNA to the sites of translation in the cytoplasm. Using mouse models of obesity-induced insulin resistance and primary hepatocyte cultures we demonstrated that both nuclear retention of ACF and apoB mRNA editing were reduced in the livers of hyperinsulinemic obese mice relative to lean controls. Coincident with an increase in the recovery of ACF in the cytoplasm was an increase in the proportion of total cellular apoB mRNA recovered in cytoplasmic extracts. Cytoplasmic ACF from both lean controls and obese mouse livers was enriched in endosomal fractions associated with apoB mRNA translation and ApoB lipoprotein assembly. Inhibition of ACF export to the cytoplasm resulted in nuclear retention of apoB mRNA and reduced both intracellular and secreted ApoB protein in primary hepatocytes. The importance of ACF for modulating ApoB was supported by the finding that RNAi knockdown of ACF reduced ApoB secretion. An additional discovery from this study was the finding that leptin is a suppressor ACF expression. Dyslipidemia is a common pathology associated with insulin resistance that is in part due to the loss of insulin controlled secretion of lipid in ApoB-containing very low density lipoproteins. The data from animal models suggested that loss of insulin regulated ACF trafficking and leptin regulated ACF expression may make an early contribution to the overall pathology associated with very low density lipoprotein secretion from the liver in obese individuals

    The first crop plant genetically engineered to release an insect pheromone for defence

    Get PDF
    Insect pheromones offer potential for managing pests of crop plants. Volatility and instability are problems for deployment in agriculture but could be solved by expressing genes for the biosynthesis of pheromones in the crop plants. This has now been achieved by genetically engineering a hexaploid variety of wheat to release (E)-β-farnesene (Eβf), the alarm pheromone for many pest aphids, using a synthetic gene based on a sequence from peppermint with a plastid targeting amino acid sequence, with or without a gene for biosynthesis of the precursor farnesyl diphosphate. Pure Eβf was produced in stably transformed wheat lines with no other detectable phenotype but requiring targeting of the gene produced to the plastid. In laboratory behavioural assays, three species of cereal aphids were repelled and foraging was increased for a parasitic natural enemy. Although these studies show considerable potential for aphid control, field trials employing the single and double constructs showed no reduction in aphids or increase in parasitism. Insect numbers were low and climatic conditions erratic suggesting the need for further trials or a closer imitation, in the plant, of alarm pheromone release

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    An in vivo platform for identifying inhibitors of protein aggregation

    Get PDF
    Protein aggregation underlies an array of human diseases, yet only one small molecule therapeutic has been successfully developed to date. Here, we introduce an in vivo system, based on a β-lactamase tripartite fusion construct, capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypeptide and amyloid β) to larger, folded immunoglobulin domains. Configured in a 48-well format, the split β-lactamase sensor readily differentiates between aggregation-prone and soluble sequences. Performing the assay in the presence of 109 compounds enabled a rank ordering of inhibition and revealed a new inhibitor of IAPP aggregation. This platform can be applied to both amyloidogenic and other aggregation-prone systems, independent of sequence or size, and can identify small molecules or other factors able to ameliorate or inhibit protein aggregation

    Overindulgence and metabolic syndrome: is FoxO1 a missing link?

    No full text
    Excessive production of triglyceride-rich VLDL, which can result from dietary overindulgence, underlies metabolic syndrome — a combination of disorders including high blood pressure, obesity, high triglyceride, and insulin resistance — and places individuals at increased risk of developing cardiovascular disease and type 2 diabetes. However, the link between VLDL overproduction and insulin resistance has remained unclear. VLDL assembly in the liver is catalyzed by microsomal triglyceride transfer protein (MTP). In this issue of the JCI, Kamagate et al. investigate the events controlling hepatic MTP expression and VLDL production and secretion (see the related article beginning on page 2347). They demonstrate that MTP is a target of the transcription factor FoxO1 and that excessive VLDL production associated with insulin resistance is caused by the inability of insulin to regulate FoxO1 transcriptional activation of MTP

    Public perception of a range of potential food risks in the United Kingdom

    No full text
    This study aimed to use a standard questionnaire to obtain a nationally representative sample of opinions on a range of potential food risks. Participants were a national sample of 1182 subjects selected using three different approaches: random and sentinel postal samples and a telephone survey. A modified psychometric questionnaire (the Perceived Food Risk Index) was administered to subjects on three occasions, spanning five time-points. Baseline data collection was undertaken from October to December 1998 (phase 1). The second wave of data collection was undertaken over three time-points in February, April and July 1999 (one-third of respondents to phase 1 at each time-point – data combined as phase 2), and the final phase of data collection was between October and December 1999 (phase 3). Principal components analysis was used to assess the intercorrelations between the items on the questionnaire. Two main components were identified as ‘dread’ and ‘knowledge’. Saturated fats were perceived as the least dreaded and the most known of the potential risks considered, while bovine spongiform encephalopathy and Salmonella were the risks dreaded the most. There was a slight perception that the potential risks had become more known over the year, especially for growth hormones. This study has raised a number of important issues for risk communicators. Despite current policy aimed at reducing fat intake, this will be difficult to achieve at a population level since people are not worried about its impact, yet food safety continues to be a significant concern to the public
    corecore