32 research outputs found

    White Spruce Seedling (Picea glauca) Discovered North of the Brooks Range Along Alaska's Dalton Highway

    Get PDF
    A white spruce seedling, Picea glauca (Moench) Voss, was found at the northern edge of the Brooks Range in Alaska, more than 50 km north of the latitudinal tree line. The seedling, 19 cm tall and about nine years old, was growing at the side of the Dalton Highway to Prudhoe Bay. It most likely sprouted from a seed transported across the Brooks Range on a vehicle and has survived on the well-drained gravel road berm, where site conditions are more favorable for germination and survival than in the surrounding tundra. This spruce has survived for about a decade under current climatic conditions. Even with a warming climate, natural seed dispersal is severely hampered by the rugged topographic barrier of the Brooks Range. Considering the amount of vehicle traffic on the Dalton Highway, however, it is likely that more pioneering spruce seedlings will turn up along this corridor. Once over the Brooks Range, a spruce population can potentially develop and expand.Un plant d’épinette blanche, Picea glauca (Moench) Voss, a été trouvé du côté nord de la chaîne de Brooks en Alaska, plus de 50 kilomètres au nord de la limite forestière latitudinale. Le plant de 19 centimètres de hauteur a environ neuf ans et pousse au bord de l’autoroute de Dalton, vers la baie Prudhoe. Il est vraisemblablement le fruit d’une graine transportée par un véhicule à travers la chaîne de Brooks. Il a survécu sur la berme de la route de gravier bien irriguée, où les conditions sont plus favorables à la germination et à la survie des graines que dans la toundra environnante. Cette épinette vit depuis une dizaine d’années dans les conditions climatiques actuelles. Malgré le réchauffement climatique, la dispersion naturelle des graines est gravement entravée par la barrière topographique accidentée de la chaîne de Brooks. Cependant, compte tenu de l’intensité de la circulation routière sur l’autoroute de Dalton, il est fort possible que d’autres plants d’épinettes poussent le long de ce corridor. Une fois de l’autre côté de la chaîne de Brooks, une population d’épinettes pourrait se développer et prendre de l’expansion

    Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

    Get PDF
    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders.

    Get PDF
    Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development

    The genetics of the mood disorder spectrum:genome-wide association analyses of over 185,000 cases and 439,000 controls

    Get PDF
    Background Mood disorders (including major depressive disorder and bipolar disorder) affect 10-20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Despite their diagnostic distinction, multiple approaches have shown considerable sharing of risk factors across the mood disorders. Methods To clarify their shared molecular genetic basis, and to highlight disorder-specific associations, we meta-analysed data from the latest Psychiatric Genomics Consortium (PGC) genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; non-overlapping N = 609,424). Results Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More genome-wide significant loci from the PGC analysis of major depression than bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell-types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment – positive in bipolar disorder but negative in major depressive disorder. Conclusions The mood disorders share several genetic associations, and can be combined effectively to increase variant discovery. However, we demonstrate several differences between these disorders. Analysing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum

    Long-term recovery patterns of arctic tundra after winter seismic exploration

    Get PDF
    In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska’s North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of disturbance from winter seismic vehicles in the Arctic predicted short-term and mostly aesthetic impacts, but we found that severe impacts to tundra vegetation persisted for two decades after disturbance under some conditions. We recommend management approaches that should be used to prevent persistent tundra damage

    Landscape Change Detected over a Half Century in the Arctic National Wildlife Refuge Using High-Resolution Aerial Imagery

    No full text
    Rapid warming has occurred over the past 50 years in Arctic Alaska, where temperature strongly affects ecological patterns and processes. To document landscape change over a half century in the Arctic National Wildlife Refuge, Alaska, we visually interpreted geomorphic and vegetation changes on time series of coregistered high-resolution imagery. We used aerial photographs for two time periods, 1947–1955 and 1978–1988, and Quick Bird and IKONOS satellite images for a third period, 2000–2007. The stratified random sample had five sites in each of seven ecoregions, with a systematic grid of 100 points per site. At each point in each time period, we recorded vegetation type, microtopography, and surface water. Change types were then assigned based on differences detected between the images. Overall, 23% of the points underwent some type of change over the ~50-year study period. Weighted by area of each ecoregion, we estimated that 18% of the Refuge had changed. The most common changes were wildfire and postfire succession, shrub and tree increase in the absence of fire, river erosion and deposition, and ice-wedge degradation. Ice-wedge degradation occurred mainly in the Tundra Biome, shrub increase and river changes in the Mountain Biome, and fire and postfire succession in the Boreal Biome. Changes in the Tundra Biome tended to be related to landscape wetting, mainly from increased wet troughs caused by ice-wedge degradation. The Boreal Biome tended to have changes associated with landscape drying, including recent wildfire, lake area decrease, and land surface drying. The second time interval, after ~1982, coincided with accelerated climate warming and had slightly greater rates of change

    Appendix E. Collection of photos depicting seismic lines in 1984 and over time.

    No full text
    Collection of photos depicting seismic lines in 1984 and over time

    Appendix C. Figures and discussion of distribution of disturbance levels on winter seismic trails, monitored over a 21 year period at 200 random–systematic plots on the trails.

    No full text
    Figures and discussion of distribution of disturbance levels on winter seismic trails, monitored over a 21 year period at 200 random–systematic plots on the trails
    corecore