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Long-term recovery patterns of arctic tundra
after winter seismic exploration
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Abstract. In response to the increasing global demand for energy, oil exploration and
development are expanding into frontier areas of the Arctic, where slow-growing tundra
vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation
of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past
decade, and the cumulative impact represents a geographic footprint that covers a greater
extent of Alaska’s North Slope tundra than all other direct human impacts combined. Seismic
exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife
Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of
vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered
tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times
from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil
and ground ice characteristics. We developed Bayesian hierarchical models, with temporally
and spatially autocorrelated errors, to analyze the effects of vegetation type and initial
disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw
depth. Plant community composition was altered on the trails by species-specific responses to
initial disturbance and subsequent changes in substrate. Long-term changes included increased
cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low
levels of initial disturbance usually improved well over time, whereas those with medium to
high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of
riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after
severe initial damage. Recovery to pre-disturbance communities was not possible where trail
subsidence occurred due to thawing of ground ice. Previous studies of disturbance from winter
seismic vehicles in the Arctic predicted short-term and mostly aesthetic impacts, but we found
that severe impacts to tundra vegetation persisted for two decades after disturbance under
some conditions. We recommend management approaches that should be used to prevent
persistent tundra damage.

Key words: Arctic National Wildlife Refuge, Alaska, USA; arctic tundra; induced thawing; long-term
damage; permafrost soils; plant community; recovery; seismic exploration; thermokarst; winter trail
disturbance.

INTRODUCTION

In response to the increasing global demand for

energy, oil exploration and development are expanding

into frontier areas of the Arctic, where slow-growing

tundra vegetation and the underlying permafrost soils

are very sensitive to disturbance (NRC 2003). This

expanding human activity is occurring with insufficient

knowledge of the long-term impacts to arctic ecosystems

and there is an urgent need to improve the management

of oil exploration and development across diverse

ecosystems. In this paper, we provide results from

long-term monitoring of disturbance associated with oil

exploration in northern Alaska that we hope will

contribute to reducing impacts of industrial activity in

the Arctic.

Early oil exploration in northern Alaska in the 1940s,

during an era of minimal environmental concern,

created numerous scars that are still visible 60 years

later. This long-term damage was primarily a conse-

quence of severe surface disturbance that induced

thawing of permafrost (Lawson 1986). Since about

1970, however, impacts have been substantially reduced

by conducting exploration during winter when the

ground is frozen and snow covered (Hernandez 1973,

Walker et al. 1987). Seismic exploration for oil requires

multiple vehicles to travel on surveyed grids over the

tundra. Short-term studies of these winter vehicle trails

(2–8 years) found disturbance was greatly reduced by

land-management regulations and the studies typically

predicted that winter trails would recover fully within a
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decade (Bliss and Wein 1972, Chapin and Shaver 1981,

Reynolds 1982, Densmore 1985, Walker et al. 1987).

Accordingly, the oil industry and government regulators

generally consider winter seismic exploration to be a

low-impact activity with only short-term aesthetic

impacts (NRC 2003).

The creation of seismic trails has accelerated in the

past decade, however, and the cumulative impact

represents a geographic footprint that covers a greater

extent of Alaska’s North Slope tundra than all other

direct human impacts combined (NRC 2003). Despite

the magnitude of this activity, there is insufficient

information on the long-term impacts of winter seismic

exploration on tundra to effectively manage this rapidly

expanding exploration activity and to accurately esti-

mate the overall amount of human disturbance in the

Arctic. We address this data gap by continuing to

monitor the recovery of tundra vegetation and soil that

was disturbed by winter seismic exploration in 1984 and

1985 on the coastal plain of the Arctic National Wildlife

Refuge (Arctic NWR), Alaska. Earlier papers docu-

mented recovery on trails during the first seven years of

this study (Felix and Raynolds 1989a, b, Raynolds and

Felix 1989, Felix et al. 1992, Emers et al. 1995, Emers

and Jorgenson 1997). This paper documents recovery

after 18 years.

Of particular concern for off-road tundra travel is the

sensitivity of permafrost to disturbance because degra-

dation and thaw settlement can lead to dramatic shifts in

recovery patterns away from original conditions, de-

pending on ice contents of the permafrost. This concern

is exacerbated by recent climate warming that has made

ground ice more susceptible to thaw (Jorgenson et al.

2006). A warming climate also is likely to alter the

competitive interactions between different plant species

as they revegetate bare ground on trails. Thus, it is

imperative to document recovery patterns over the last

two decades to better understand how disturbance and

recovery patterns may change in a warming Arctic.

Evaluating disturbance and recovery is difficult due to

the complex interactions among disturbance character-

istics (e.g., vehicle type, number of passes), the factors

that affect resistance to disturbance (e.g., vegetation,

soil, snow, surface hydrology, permafrost, topography),

and varying response of ecosystem components (e.g.,

grasses vs. evergreen shrubs). Spatial variability of these

factors rarely can be controlled to provide an optimal

statistical design for analyzing the patterns across a

range of conditions (Ver Hoef 2002). Sample sizes can

be highly variable across all combinations of disturbance

levels and terrain conditions. To address these problems

in analyzing post hoc disturbance data, we developed a

new Bayesian hierarchical modeling approach to better

estimate the effects of intensity of initial disturbance,

plant growth form, vegetation type, and time to

recovery.

Objectives of this study were to: (1) quantify changes

in plant cover and soil thaw depth over an 18-year

period after disturbance; (2) determine long-term

recovery patterns by comparing the responses of

differing plant growth forms and plant communities to

varying levels of initial disturbance; (3) compare our

results to predictions from earlier reports and other

studies; and (4) develop recommendations for land

management that can help to reduce long-term impacts.

METHODS

Study area

The study area is on the coastal plain of the Arctic

National Wildlife Refuge (ANWR) in northeastern

Alaska, between 698300 N and 708100 N (Fig. 1). It lies

within low-arctic tundra and is bordered by the Brooks

Range to the south and the Beaufort Sea to the north. It

has low precipitation, very low winter temperatures, and

short, cool summers. Soils are underlain by continuous

permafrost, and the thawed surface layer reaches an

average maximum depth of 15–60 cm in August. The

ground surface remains frozen and snow covered from

FIG. 1. Map of 1984–1985 seismic lines and study plots in Arctic National Wildlife Refuge (ANWR), Alaska, USA. Plots
(paired disturbed–reference) are located on seismic lines (shown) and on adjacent camp-move trails (not shown).
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approximately mid-September to early June. Winter

snow cover is shallow due to low precipitation and

variable because of redistribution by high winds,

resulting in sparse cover on hillcrests and deep

accumulations in water courses.

Foothills of the Brooks Range cover 45% of the area

(Walker et al. 1982). Broad uplands are dissected by

north-flowing rivers. Hilly coastal plains cover 22% of

the area and have gently undulating tundra with small

thaw lakes. Flat thaw lake plains with large lakes cover

3% of the area. River floodplains cover 25% of the area.

Vegetation is a nearly continuous, highly interspersed

mosaic of plants less than 0.5 m tall, mainly sedges, low

shrubs, and mosses. Shrubs are taller along drainages.

Soil texture and moisture are important determinants of

the different tundra vegetation types (Table 1), which

were based on Walker et al. (1982).

Description of seismic exploration activities

Seismic exploration maps subsurface geological struc-

tures by sending shock waves into the ground from

surface vehicles and recording their reflectance patterns.

Vehicles travel along a surveyed grid, with multiple

vehicle passes along each line. Approximately 2000 km

of seismic exploration line were completed in a 5 3 10

km grid over a 6300 km2 area (Fig. 1). Over 2000 km of

additional trails were created adjacent to the seismic

lines by D-7 Caterpillar tractors pulling ski-mounted

trailers (cat-trains) between crew camps. Trail widths

ranged from 4 m to .50 m. Exploration occurred from

January through May, 1984 and 1985, when require-

ments were met for minimum protective snow cover (15

cm) and depth of frozen soil surface (30 cm). The U.S.

Fish and Wildlife Service enforced permit stipulations to

minimize impacts to vegetation and wildlife. Monitors

traveled with the seismic crews to choose routes that

avoided the most easily damaged areas, such as steep

slopes and snow-free areas. Seismic vehicles included

vibrator units (4.5 psi [¼31.0 kPa]) and dynamite units

(2.8 psi [¼17.2 kPa]), plus smaller personnel carriers. The

highest ground pressure vehicles were D-7 caterpillar

tractors (10.5 psi [¼72.4 kPa]).

Field sampling

Thirty permanent paired plots (disturbed, reference)

were established along new vehicle trails in 1984 and

1985. Disturbed plots were chosen from across the study

area to represent different vegetation types at low,

medium, and high levels of initial disturbance. Reference

plots were established 2–10 m away from disturbed plots

on undisturbed tundra with the same topography and

vegetation. Plots were observed the first two summers

after disturbance (1984 and 1985, or 1985 and 1986) and

in 1988, 1991, and 2002.

TABLE 1. Vegetation types of the coastal plain of the Arctic NWR, Alaska, USA, based on Walker et al. (1982).

Type Description

Wet sedge tundra (13% of area) Low-lying flats and drainages with the sedges Carex aquatilis and Eriophorum angustifolium
and little moss or shrub cover. The poorly drained soils are saturated throughout the
summer and have a thick, fibrous organic horizon.

Sedge–willow tundra (30%) Low-lying flats and gentle slopes with the sedges Eriophorum angustifolium and Carex
aquatilis and the willows Salix pulchra and S. reticulata. Mosses include Tomenthypnum
nitens, Hylocomium splendens, Aulacomnium spp., Sphagnum spp., and Campylium
stellatum. On fine-grained retransported, glaciofluvial, and abandoned floodplain deposits.
Soils have moderately thick organic layer and are saturated at intermediate depths but
generally free of surface water.

Sedge–Dryas tundra (13%) Moderately well-drained sites dominated by the dwarf shrub Dryas integrifolia and the
sedge Carex bigelowii, with the willows Salix richardsonii, S. phlebophylla, and S.
reticulata and mosses such as Tomenthypnum nitens, Hylocomium splendens, Distichium
capillaceum, and Ditrichum flexicaule. Forbs (e.g., Lupinus arcticus), lichens (e.g., Cetraria
spp.), and horsetails (e.g., Equisetum variegatum) are common. Found on moist
calcareous slopes and pebbly glacial and marine sediments. Notable for a hummocky
surface topography, patches of exposed mineral soil, and extremely variable organic
horizons resulting from active and stabilized frost boils.

Tussock tundra (28%) Moderately well-drained slopes dominated by the tussock-forming sedge Eriophorum
vaginatum, with shrubs Salix pulchra, Betula nana, Ledum palustre ssp. decumbens, and
Vaccinium vitis-idaea. Bryophytes include Hylocomium splendens, Sphagnum spp.,
Aulacomnium turgidum, Ptilidium ciliare, and Tomenthypnum nitens. Occurs on deposits of
loess or colluvial material on top of coarser, residual materials or glacial drift.

Shrub tundra (5%) Dominated by low and dwarf shrubs, with Betula nana or Salix pulchra and understory
species similar to tussock tundra. In the study area, occurs only on raised areas with
high-centered polygon surface morphology.

Riparian shrubland (2%) Willow shrublands on river floodplains and stream banks, dominated by Salix alaxensis, S.
glauca, and S. richardsonii, commonly with a forb understory. Willows have an average
height of 0.5 m and maximum of about 1.5 m. Occurs on both young floodplain deposits
with mixed gravel and fine-grained material, and older terraces with a thin, fine-grained
alluvium layer over gravel.

Dryas terrace (3%) Infrequently flooded river terraces with Dryas integrifolia and other dwarf shrubs, forbs,
horsetails, mosses, and lichens similar to sedge–Dryas tundra. Well-drained soils with a
very thin organic mat over river deposits.
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Each plot was assigned a disturbance rating (Table 2)

adapted from a system presented in Radforth (1972).

Each plot was assigned a vegetation type and was rated

for six disturbance factors: difference between the

disturbed and reference plot in percent total vegetative

cover, percent shrub cover, and percent exposed soil;

impact to microscale surface structure; trail compression

or subsidence; and change in plant species composition.

These measures were used to assign a summary

disturbance rating. This rating was either the same as

the rating for vegetative cover, or higher if one of the

other factors was rated as high. The vegetation types

and initial disturbance ratings were used to stratify the

plots for analysis.

Point sampling (Kent and Coker 1999) was used to

quantify percent cover of plant species in disturbed and

reference plots. In each 4 3 30 m plot, a vertical point

frame was used to sample 20 points (spaced at 20-cm

intervals) on each of 10 evenly spaced 4 m long transects,

for a total of 200 points per plot. To obtain cover

estimates, a pin was lowered from the frame at each

point and each species intercepted by the pin was

recorded. Plant cover data were collected in midsummer

near peak biomass. Plant nomenclature followed the

PLANTS Database (USDA 2009).

Soils and soil ice were described in 1985 at the reference

plots, to determine if natural subsurface characteristics

affected initial disturbance and subsequent recovery in

adjacent disturbed plots. At each plot, five soil pits were

sampled at 5-m intervals. Soil horizons were measured

and described following Bates et al. (1982). A 75 mm

diameter permafrost core was used to obtain soil samples

in permafrost. Excess soil ice content was estimated at 18

plots that did not have rocky soil. The upper 30 cm of

frozen soil from each core was removed and thawed, and

the volume of water in excess of soil saturation was

decanted and measured. Excess ice content was calculat-

ed as the percentage of the total core volume: I ¼
100Vi/Vc and Vi ¼ 1.09Vw, where Vi is the volume of

excess ice in the core, Vc is the the volume of the core, Vw

is the volume of water in excess of soil saturation in the

core, and the coefficient of expansion for water to ice is

1.09. Vertical ice wedges were avoided, so ice content

refers to segregated ice held in the soil matrix.

Disturbance levels and depth of seasonally thawed

soil above permafrost (thaw depth) were monitored at

an additional 60 plots in 1984, 1985, 1986, 1988, 1991,

1994, 1998, and 2002. Plant cover was not sampled.

Thaw depth was estimated by probing to frozen soil with

a calibrated steel rod. Depths were probed at 30 points

along transects in disturbed and reference plots.

Measurements were taken in early August, near the

time of maximum annual thaw. Thaw-depth response

was modeled similarly to the plant cover data. The

model includes 49 plots that did not have rocky soil; no

riparian types are represented.

Data analysis

A model-based approach using spatial and temporal

autocorrelation was used, rather than a design-based

method, because plots were not chosen using a

probability-based sampling scheme (for a discussion,

see Ver Hoef 2002). Modeling random errors as

autocorrelated in space and time allows valid statistical

inference on regression parameters in a model-based

approach (Ver Hoef and Cressie 2001).

Models were created for thaw depth and for six plant

growth forms: deciduous shrub, evergreen shrub,

graminoid, forb (including horsetails), lichen, and

bryophyte. Vegetation community types with few plots

were aggregated with a similar type for modeling plant

growth forms: the two shrub tundra plots were included

with tussock tundra, and one wet sedge plot was

included with sedge–willow tundra (Table 1). Aggrega-

tion was not necessary for the thaw-depth model

because of larger sample size.

We analyzed our data with a nonlinear space–time

model:

TABLE 2. Disturbance rating scheme for winter seismic trails
on the coastal plain of the Arctic NWR, Alaska, adapted
from Radforth (1972).

Factor
and level Description

Decrease in percent cover of plants

0 no observable change
1 0–25% change
2 25–50% change
3 over 50% change

Decrease in percent cover of shrub canopy

0 no observable change
1 0–25% change
2 25–50% change
3 over 50% change

Change in percentage of organic or mineral soil exposed

0 none observed
1 1–5% change
2 5–15% change
3 over 15% change

Damage to microscale structure

0 scattered scuffing of tussocks or hummocks
1 most tussocks or hummocks scuffed, some

crushed
2 most tussocks or hummocks crushed
3 ruts or crushed tussocks and hummocks

nearly continuous

Trail subsidence or compression

0 no observable compression
1 slight compression of vegetation and peat;

trail may be wetter than surrounding area
2 trail wetter than surrounding area; thaw

subsidence indistinct or patchy
3 trail a trough due to thaw subsidence

Change in plant species composition

0 no observable composition change
1 0–5% species composition change
2 6–25% species composition change
3 .25% species composition change, resulting

in major change in vegetation type

JANET C. JORGENSON ET AL.208 Ecological Applications
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Yi; jðs; tÞ ¼ pijðb0;i þ b1;it þ b2;it
2Þe�t=qi þ Zðs; tÞ þ dðt; sÞ

þ eðs; tÞ

where Yi, j (s, t) is the response variable (i.e., the percent

cover in disturbed plots minus the percent cover in the

reference plots for a particular plant growth form) for

the ith vegetation class and the jth disturbance level at

spatial location s in year t. The deterministic part of the

nonlinear model is composed of a second-order poly-

nomial in time (b0,i þ b1,it þ b2,it
2) for each vegetation

type. The multiplier e�t=qi shrinks the model toward zero

over time, allowing recovery from disturbance. We

scaled the basic curve with pij; j ¼ 1, 2, or 3 for low,

medium, and high initial disturbance (see Table 2; note

that no 0-level disturbance was recorded) to allow for

differences among initial disturbance levels by vegeta-

tion type. For parameter identifiability, we set pi3¼ 1, so

pi2 and pi1 are relative to pi3. In general, we expected pi3
. pi2 . pi1, but we allowed pi2 and pi1 to be up to twice

as large as pi3 to test whether initial disturbance has a

significant effect on fitting the curves.

These curves will not be perfect predictors of the

response variable. We expected that residuals from the

model will still have spatial and temporal patterns, so we

add three random effects. The spatial random effect is

Z(s; t). We assumed that the spatial effects were

autocorrelated within a given year t, but independent

across years. We used an exponential autocorrelation

model:

cov½Zðs; tÞ; Zðr; uÞ� ¼ CzðhÞ ¼ hsexpð�jjhjj=asÞIðt ¼ uÞ

where h ¼ s � r and ||h|| is the Euclidean distance

between any two points s and r in space and I(�) is the
indicator function. Note that we allowed a separate

realization of the random effects for each year (that is,

the ‘‘surface’’ was not fixed across years), but for

estimation stability the parameters that control them, h
and as, are common for all years.

We also assumed that the temporal random effects

were autocorrelated within a given location s, but

independent among locations. We again used an

exponential autocorrelation model:

cov½dðt; sÞ; dðu; rÞ� ¼ CdðhÞ ¼ htexpð�jhj=atÞIðs ¼ rÞ

where h¼ t� u is the difference between any two times t

and u. We assumed that spatial random effects were

independent among time periods. This allowed a

separate realization of the random effects for each site

(that is, the ‘‘time series’’ was not fixed across sites), but

the parameters that control them were common to all

sites. Finally, we added a component of uncorrelated

errors (often called the ‘‘nugget’’ [subscript n] effect in

geostatistics); e(s, t). We assumed that var(e(s, t)) ¼ hn
and e(s, t) is independent of e(r, u) when (s 6¼ r) or (t 6¼
u).

Although it is reasonable to expect that there are real

differences in the curves for each vegetation type by

disturbance class, there were not enough samples to

reliably estimate each of these curves if we simply subset
the data. Instead, we used a Bayesian hierarchical model

(BHM); see Cressie et al. (2009) for a recent discussion
regarding ecological data. We assumed that b0,i was

drawn from a normal prior distribution b0,i ; N(lb0,
r2

b0); i ¼ 1, . . . , nveg, where nveg is the number of
vegetation classes, which allowed us to ‘‘borrow

strength’’ across the vegetation classes by using ‘‘prior’’
distributions. Likewise, we used the following prior

distributions, b1,i ; N(lb1, r2
b1), b2,i ; N(lb2, r2

b2), p1,i
; UNIF(0, 2lp1), p2,i ; UNIF(0, 2lp2), and qi ;

UNIF(0, 2lq). Using these priors, estimates of each
parameter, for example p1,i, will center around the mean

of the prior distribution (lp1, for this example) when
there is little or no data for that parameter in the ith

vegetation class. Details on fitting the Bayesian hierar-
chical model are given in Appendix A.

Note that this BHM was too complicated for model
selection methods, as many BHMs are. There is little

tradition in model selection for these types of models;
see Cressie et al. (2009). Instead we tried to develop a

model that was robust, where the spatial and temporal
autocorrelation absorb lack of fit, which can still be

spatially and temporally patterned. The functional
forms that we chose for the quadratic in time, the
temporal decay, and the multiplier for disturbance type

were based on functions that would fit the data and have
interpretable parameters. We assessed the model using

sensitivity analysis, which is included in Appendix A.

RESULTS

Plant cover

The temporal response curves show that different

types of plants had very different recovery patterns after
disturbance from winter seismic exploration (Fig. 2).

After initial decreases in cover for all types of plants,
patterns of recovery over the next 18 years varied from
rapid recovery to pre-disturbance levels, to greatly

increased cover, to slow and incomplete recovery. Figs.
3–5 present response curves for three plant growth forms

that represent the range of differing responses to
disturbance, including response to three different levels

of initial disturbance in five vegetation types. Graphs for
all six growth forms are in Appendix B.

Graminoid cover (sedges, grasses) at non-riparian
sites showed moderate initial decreases, but then

increased rapidly above reference levels within five
years, especially after higher level initial disturbance

(Fig. 3). Cover peaked between five and eight years and
then decreased gradually. The response was earliest for

sedge–willow tundra, in which graminoids increased
above reference levels in every disturbed plot, even with

low initial disturbance. The effect was delayed, but
lasted longest, for plots with high initial disturbance on

sedge Dryas tundra and sedge tussock tundra.
Deciduous shrubs, forbs, and lichens had similar

recovery patterns. Deciduous shrubs were severely
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damaged in all vegetation types, especially sedge–willow

tundra and riparian shrublands (Fig. 4). Higher

disturbance levels caused greater decreases in cover,

but all levels recovered rapidly during the first 10 years.

For forbs, large initial decreases in cover were followed

by rapid recovery in the first five years. Lichen recovery

was slower. Live lichen cover continued to decrease on

trails for the first five years after disturbance, perhaps

because lichens on displaced chunks of organic mat died

over several years.

Bryophytes (mosses and liverworts) suffered large

decreases in cover after medium- to high-level distur-

bance (Fig. 5). At Dryas terrace and riparian shrubland

sites, bryophyte cover approached reference values after

18 years, even after extreme initial reductions. Recovery

of bryophytes was slow and still incomplete, however, in

the other vegetation types. One-third of all plots still had

decreases in bryophyte cover of �20% in 2002 (e.g., 54%

on reference and 34% on trail). Evergreen shrubs

showed recovery patterns similar to those for bryo-

phytes. Cover was initially greatly reduced and recovery

was generally poor. The models do not indicate any

recovery trends for either bryophytes or evergreen

shrubs in sedge–willow tundra and sedge–Dryas tundra.

FIG. 2. Fitted models for high-level disturbance for six plant growth forms in five vegetation types. Differences are percent
cover in disturbed plots minus percent cover in reference plots.

JANET C. JORGENSON ET AL.210 Ecological Applications
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Depth of thawed soil

Depth of thawed soil in late summer, which affects the

permafrost surface and potential thaw settlement, was

initially greater on trails than in the reference plots (Fig.

6). Depths continued to increase 3–8 years after

disturbance before recovering. Sedge–willow tundra

with medium- or high-level disturbance had the largest

increase in thaw depths (5–20 cm) for the first 3–5 years,

followed by stabilization to reference levels within 10

years. Wet sedge tundra had a similar pattern, but the

initial increases were only half as great. In tussock

tundra and sedge–Dryas tundra, thaw depths increased

for about five years before slowly recovering to reference

levels by 18 years. Response of thaw depths in shrub

tundra was anomalous in that depths did not continue to

increase after the first year. Riparian vegetation types

(riparian shrublands and Dryas terrace) were not

sampled due to rocky soil. All vegetation types showed

a consistent trend in greater thaw depths in response to

higher levels of disturbance.

Ground ice

Excess ice in the soil (the amount of water in excess of

what could be held within unfrozen soil pore space)

affects thaw settlement after disturbance. Excess ice in

FIG. 3. Fitted models of the response of graminoids to three levels of initial disturbance in five vegetation types. Differences are
percent cover in disturbed plots minus percent cover in reference plots. The short-dashed line is the 95% credibility envelope of the
fitted model for the highest level of initial disturbance. The variance components, which show the relative partitioning of variability
in the data, are ht (temporal), hs (spatial), and hn (nugget [uncorrelated]).
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the top 30 cm of the permafrost ranged from 2% to 45%

by volume across 18 reference plots sampled. Ice

contents were highest for sedge–Dryas tundra and

sedge–willow tundra, intermediate for tussock tundra,

and lowest for shrub tundra and wet sedge tundra (Fig.

7). Riparian vegetation types were not sampled due to

rocky soil, but probably had little ice accumulation

because of coarse soil texture.

Greater soil ice content was associated with greater

trail subsidence and higher disturbance ratings (Fig. 7).

Sedge–Dryas tundra, which had the highest mean excess

ice contents, also had the highest frequency of trails

with a high subsidence rating (thaw settlement evident;

Table 2). Moist sedge–willow and tussock tundra had

both intermediate ice and intermediate frequencies of

medium-to-high thaw settlement ratings. When all plots

were grouped, six of nine plots with �20% excess ice

had medium or high subsidence ratings, and seven of

nine were rated as highly disturbed either initially or

else deteriorated to that level by 2002. Of the nine plots

with ,20% excess ice, only two showed detectable

subsidence and none was rated as highly disturbed.

Subsidence often was not apparent until after the first

few years.

DISCUSSION

Vegetation

Tundra ecosystems showed low resistance to vehicle

damage during winter, with initial decreases in cover for

FIG. 4. Fitted models of response of deciduous shrubs to three levels of initial disturbance in five vegetation types. Differences
are percent cover in disturbed plots minus percent cover in reference plots. The short-dashed line is the 95% credibility envelope of
the fitted model for the highest level of initial disturbance. The variance components are ht (temporal), hs (spatial), and hn (nugget).
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all plant growth forms and in all plant community types.

Monitoring of recovery over a two-decade period

indicated that different plant species and plant commu-

nities varied greatly in resilience. Resilience can be

defined as the degree, manner, and pace of recovery of

an ecosystem to its original state after disturbance

(Westman 1978). Many differences can be explained by

growth strategies of different species. However, the low

resilience of some species and communities cannot be

explained without an understanding of the physical

changes that occurred on some trails after vehicle traffic

due to thawing of ice-rich permafrost.

The dramatic increase in graminoid cover on trails

during the first decade was mainly due to vigorous

growth of the rhizomatous sedges Eriophorum angusti-

folium Honck. and Carex aquatilis Wahlenb. In all years

of this study, these species had the largest increases in

cover above reference levels of any plant species. These

resilient species thrive in disturbed areas with moist to

wet soil, often to the exclusion of other species. Plant

productivity and nutrient analyses in the early years of

this study showed large initial increases in tissue

nutrients and productivity for these species on trails in

1985 and 1988 (Emers et al. 1995). By 1991, however,

the initial nutrient stimulus tapered off. Higher soil

moisture on trails from compressed soil or subsidence

allows more summer heat transfer to the soil, increasing

soil temperature, decomposition rates, and nutrient

FIG. 5. Fitted models of response of bryopohytes to three levels of initial disturbance in five vegetation types. Differences are
percent cover in disturbed plots minus percent cover in reference plots. The short-dashed line is the 95% credibility envelope of the
fitted model for the highest level of initial disturbance. The variance components are ht (temporal), hs (spatial), and hn (nugget).
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mineralization, at least transiently (Chapin and Shaver

1981). In contrast, the tufted sedges Eriophorum

vaginatum L. and Carex bigelowii Torr. had few

increases in nutrients and productivity after disturbance

(Emers et al. 1995). These two species form raised

tussocks and hummocks that were damaged even at low

levels of disturbance. They generally did not respond

opportunistically to disturbance, but did achieve modest

increases above reference levels in some plots by 2002.

Grasses increased above reference levels after distur-

bance on sites where surface soil remained dry. Some

trails on sedge–Dryas tundra were highly visible during

the first five years after disturbance, due to dense grass,

mainly Arctagrostis latifolia and several species of Poa

L. Grass cover decreased toward reference values after

10 years and trails became less visible. Increased grass

cover in the first decade after disturbance has been

reported by Hernandez (1973) and others, but the longer

term outcome was unknown.

Graminoid cover on trails decreased from 10–18

years, but all of the highly disturbed non-riparian plots

still had more graminoid cover on the trails than in

references in 2002. Some trails that subsided were still

dominated by rhizomatous sedges and remained highly

visible up to 24 years after disturbance and are not

expected to return to the original vegetation for many

more decades (Fig. 8).

FIG. 6. Fitted models of seasonal soil thaw depth to three levels of initial disturbance in five vegetation types. Differences are
depth in disturbed plots minus depth in reference plots (cm). The short-dashed line is the 95% credibility envelope of the fitted
model for the highest level of initial disturbance. The variance components are ht (temporal), hs (spatial), and hn (nugget).
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Deciduous shrubs included shrub birch (Betula nana

L. ssp. exilis (Sukatsch.) Hulten ) and 13 species of

willow (Salix L.). They recovered well within 10 years

after disturbance, but did not increase above reference

levels. Many deciduous shrubs, particularly willows, are

well adapted to disturbance, such as river flooding and

grazing, and quickly resprout from buds or roots. Dwarf

willows that grew on drier sites, such as Salix

phlebophylla Anderss., recovered more slowly than erect,

moist-site willows such as S. pulchra Cham. Kemper and

Macdonald (2009a) reported that winter seismic trails

20–30 years old had shrubbier vegetation than sur-

rounding tundra on the partially forested Mackenzie

Delta, Canada, mainly due to increases of the boreal

forest species of shrub birch, Betula glandulosa Michx.

They suggested that a warming climate could have

favored shrub regrowth over other plants. In artificial

tundra fertilization and warming experiments, the arctic

shrub birch Betula nana L. ssp. exilis (Sukatsch.) Hulten

increased in dominance over willows and all other plants

(Bret-Harte et al. 2001). In our study, the willow Salix

pulchra and, to a lesser extent, Betula nana, increased

annual twig productivity and tissue nutrient content on

trails for the first three or four years after disturbance,

but the effect was negligible by eight years (Emers et al.

1995).

In contrast to deciduous shrubs, evergreen shrubs

showed poor recovery 18 years after disturbance. The

dwarf ericaceous shrubs Vaccinium vitis-idaea L. and

Ledum decumbens (Aiton) Lodd. Ex Steud. showed less

post-disturbance increase in productivity and leaf

nutrient content on these trails than deciduous shrubs

(Emers et al. 1995), indicating a more conservative

response to change. Starr et al. (2008) reported that

these two ericaceous shrub species had the lowest

maximum photosynthetic capacity of all the tundra

plant species that they tested. They also store more of

their nutritional reserves above ground than deciduous

FIG. 7. (a) Excess ice contents (mean and upper portion of 95% CI) in the top 30 cm of permafrost in undisturbed tundra in
1985 (number of plots sampled is given above bars). Daggers indicate vegetation types that were not sampled due to gravel, where
excess ice was assumed to be 0%. (b) Frequency of four levels of soil subsidence (negligible through high) 18 years after disturbance
on an adjacent trail.
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shrubs, so they may take longer to recover after stem

breakage. Poor evergreen shrub recovery was often

associated with wetter soil conditions on trails (Fig. 9),

but recovery was also poor on drier sites. Riparian

shrublands and Dryas terrace sites had Dryas integrifolia

M. Vahl. of the rose family, which recovered better than

ericaceous shrubs. Poor recovery of ericaceous shrubs,

coupled with increased sedge (Eriophorum angustifo-

lium), caused some trails on tussock tundra to remain

visible for at least 23 years, even as the tussocks

recovered (Fig. 10).

Many forb species successfully recolonized trails in

the early years (Emers et al. 1995), but were not more

abundant than in the surrounding tundra. Forb species

diversity was greatly reduced on trails through 1991, but

was similar to references in 2002.

Lichen cover changed little and recovered rapidly,

mainly due to early colonization of exposed mineral soil

and peat by crustose lichens such as Ochrolechia frigida

(Sw.) Lynge and Lecanora epibryon (Ach.) Ach. Other

lichens usually recovered slowly, but nearly completely,

by 2002.

Bryophytes have greater cover in the study area than

all other plant growth forms combined and are

important ecologically for insulating the underlying

permafrost from summer air temperatures. They initially

suffered large reductions in cover on the trails, perhaps

because they lack roots and are more weakly anchored

to the substrate than vascular plants. At non-riparian

sites there was little recovery, even after 18 years. In

contrast, at riparian sites bryophytes recovered to near

reference levels after 18 years, even after large initial

reductions. Mosses, such as Distichium capillaceum

(Hedw.) Bruch & Schimp. and Ditrichum flexicaule

(Schwagr.) Hampe, recolonized bare mineral soil, which

was common at riparian sites. The longest lasting

damage was the destruction of mats of pleurocarpous

feathermosses, which exhibit the ‘‘perennial stayer’’ life

strategy (During 1979) and are evidently slow-growing,

late-successional species. The common feathermosses

Tomenthypnum nitens (Hedw.) Loeske and Hylocomium

splendens (Hedw.) Schimp. seldom recovered in sedge–

willow tundra and sedge–Dryas tundra, but did show

some recovery in about one-half of the other plots. The

common liverwort Ptilidium ciliare (L.) Hampe and

Sphagnum L. mosses were greatly reduced on trails and

showed no recovery. These four bryophyte taxa had the

largest persistent decreases of any plant species. Most

other bryophyte taxa showed more recovery, although

regrowth was slow and often not complete by 2002.

The inability of bryophytes to recover two decades

after disturbance may be explained by low growth rates;

disadvantage in competition for light and moisture

against faster growing and taller stature vascular plants,

especially rhizomatous sedges; and difficulty recoloniz-

ing peat substrates that can dry out rapidly during dry

weather. Bryophytes generally lack a vascular system,

are dependent on a transient external water supply, and

must be well hydrated to maintain active metabolism

(Longton 1988). Individual bryophyte species also have

narrow moisture tolerances for optimal growth and

many species reproduce only vegetatively in the Arctic

(Callaghan and Collins 1981). This may limit recoloni-

zation by new species if site conditions change after

disturbance.

The results from these plots showing good recovery

for most growth forms and vegetation types under low

FIG. 8. Aerial views of a highly disturbed camp-move trail
made in winter of 1985 on moist sedge–willow tundra,
photographed in July 1985 (above) and July 2007 (below). An
undisturbed reference plot to the left of the trail had a soil
excess ice content of 28% in 1985. Thawing of soil ice and ice
wedges led to trail subsidence. The trail remained wetter and
greener than surrounding tundra in 2007, with more rhizoma-
tous sedge cover and less feathermoss cover. Photos are
courtesy of the U.S. Fish and Wildlife Service.
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to moderately disturbed conditions, and poor recovery

under highly disturbed conditions, are consistent with a

companion study of rapidly assessed random–system-

atic plots on these trails (Appendix C). That study,

which involved rating of disturbance at a sample of 200

points on the trails, revealed that the percentage of

plots that remained disturbed decreased from 79% in

1985 to 48% in 1989, 11% in 1993, 6% in 1998, and 5%

in 2009. For points that initially had low-level

disturbance, recovery was rapid. About one-quarter

of all points had medium- to high-level disturbance in

1985 and these recovered more slowly. Medium and

high level disturbance did not persist until 2009 unless

trail subsidence occurred.

Permafrost

The presence of permafrost greatly increases the

complexity of ecological responses to disturbance in

the Arctic, due to feedbacks between soil topography,

hydrology, and ground ice. Initial minor thaw settlement

caused by disturbance can lead to water impoundment,

decreased albedo, and increased heat flux, which in turn

causes more thaw settlement (Lawson 1986). This thaw

settlement and changing hydrology causes shifting

recovery patterns away from the original site conditions

toward new plant communities that make some trails

remain visible for many years.

The amount of ground ice was an important factor

determining the long-term effects of seismic trails. There

FIG. 9. Repeat photographs of a seismic trail across a raised area with dwarf shrubs and moss, with a natural trough on the
right. The 1989 photograph (above) shows collapse of the edge of the raised area into the adjacent trough after vehicle traffic during
1985 exploration. The 1993 photograph (below) shows the same location after sedges had replaced the shrubs and mosses due to the
altered moisture regime. Photos are courtesy of the U.S. Fish and Wildlife Service.
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is a substantial risk of thaw subsidence on the coastal

plain of northern Alaska because of the high volume of

ice at the top of the permafrost (Nelson et al. 2001).

Ground ice varies widely across the landscape in

association with landscape age, soil texture, soil organic

matter accumulation, and drainage (Jorgenson et al.

1998, Pullman et al. 2007). Active floodplains with

relatively young sediments and sandy textures have little

excess ice. Our riparian sites (riparian shrublands and

Dryas terraces) had good vegetation recovery, even after

extreme initial damage, because the ice-poor gravel

substrate did not subside and conditions for plant growth

did not change. Relatively old coastal plain deposits with

loamy soils can have high excess ice contents. Trails on

upland sites with low initial disturbance usually recovered

well, but those with medium or high disturbance often

caused subsidence and long-term changes in plant

community composition.

Much of the persistent disturbance on seismic trails

was associated with degrading ice wedges. In addition to

excess ice in the soil matrix, ice wedges form massive ice

just below the thawed soil layer and are particularly

sensitive to disturbance and climate change (Jorgenson

et al. 2006). We did not quantify ice wedges in our study

plots, but their presence could be ascertained by ground

surface patterns. One-third of our study area has ground

surface patterns indicative of subsurface polygonal

networks of ice wedges (Jorgenson et al. 1994). Ice-

wedge induced troughs frequently became larger after

medium- and high-level disturbance, especially in sedge–

Dryas tundra and sedge–willow tundra. Thermokarst

ponds gradually developed over ice-wedge troughs on

some trails. These observations indicate that damage

can increase gradually over long periods, thaw settle-

ment can occur even at moderate levels of disturbance,

and that stabilization will take much more than two

decades at the more damaged sites on ice-rich substrates.

Implications for management

Seismic exploration has been conducted every winter

on the North Slope of Alaska since at least 1976, and

trails in various stages of recovery are visible from the

air during the summer in many areas. Current ‘‘3-D’’

seismic exploration, which produces three-dimensional

images of subsurface structures, creates a much denser

grid of seismic lines (0.2–0.5 km apart) than the ‘‘2-D’’

exploration in the Arctic NWR during the 1980s (5–20

km apart). The National Research Council (NRC 2003)

estimated that 51 500 km of trails were made on the

North Slope between 1990 and 2001, and that another

43 450 km would be surveyed in the following 10 years.

Precise estimates cannot be made because locations of

the trail networks are not available to the public.

There are numerous factors that affect disturbance

and recovery, such as vehicle type, traffic patterns and

number of passes, vegetation, soil, and snow depth. We

will summarize recommendations for managing many of

these factors to reduce impacts.

Sensitive vegetation should be avoided to help reduce

damage. Identifying and avoiding sensitive areas will

require detailed vegetation maps and a management

strategy to implement appropriate trail routing. Vege-

tation types dominated by sedges and deciduous shrubs

recover relatively well, whereas vegetation types domi-

nated by evergreen shrubs are much slower to recover

(Appendix D). Sensitive vegetation types, such as sedge–

Dryas tundra and tussock tundra, should be avoided.

Routing of vehicles around riparian shrublands is not

necessary, given the rapid recovery rates.

Areas of high ground ice, especially terrain with

abundant ice wedges, should be avoided. Such areas are

prone to thaw settlement, which creates long-term

changes in topography and surface hydrology, such as

channeling flow on slopes and drying of adjacent areas.

This will require improved surficial geology maps and a

much better knowledge of the nature and volume of

ground ice associated with varying terrain types.

Climate change is likely to make permafrost even

more sensitive to seismic exploration activity in the

future. We speculate that warming in the past two

decades has exacerbated some of the thawing on trails

reported in this paper. The trail disturbances in 1984 and

1985 had the unfortunate timing of occurring only a few

years before the unusually warm summer in 1989, which

probably initiated the widespread degradation of ice

wedges observed elsewhere on the North Slope of

Alaska (Jorgenson et al. 2006). With climate predicted

to get much warmer in the Arctic, enhanced efforts will

be needed to avoid medium- to high-level disturbances

that we found led to permafrost degradation.

FIG. 10. Trail on sedge–tussock tundra, made by camp-
move vehicles in 1984 and photographed in 2005. The trail was
still visible after 21 years because it had fewer evergreen shrubs
and more sedges than surrounding tundra. The photo is
courtesy of the U.S. Fish and Wildlife Service.
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Sufficient snow cover is important to minimize vehicle

damage to tundra. An earlier study of factors affecting

seismic impacts in the Arctic NWR reported that snow

depths of at least 25 cm were required to reduce impacts

(Felix and Raynolds 1989b). Snow had to be deep

enough to cover tussocks in tussock tundra and provide

a slab depth of at least 20 cm over basal hoar frost in

sedge–willow tundra. Since 2004, regulations for winter

activity on State of Alaska Lands require a mean snow

depth of 15 cm on the flatter coastal plain and 23 cm in

the foothills, which are mainly tussock tundra.

Vehicle weight and track configuration are important

determinants of degree of disturbance. Camp trailers

pulled by tractors caused more long-term damage in

1984–1985 than seismic survey vehicles. By 2009, 9% of

camp trail plots in a random sample were still disturbed,

whereas no seismic line plots showed signs of distur-

bance. Recent studies in northern Alaska indicate that

camp-move vehicles still cause most of the damage that

is likely to persist. A survey of impacts from a 1996

seismic exploration program on Alaska’s North Slope

found that 6% of seismic lines and 29% of camp trails

had at least medium-level disturbance initially (Jorgen-

son et al. 2003). A study of disturbance from 1998

seismic exploration by the Bureau of Land Management

(BLM, unpublished data) found that 4% of seismic lines

and 63% of camp-move trails were still disturbed after

six years. The third summer after 2006 seismic explora-

tion in the Teshepuk Lake Special Area in northern

Alaska, camp-move trails were more visible from the air

than seismic trails (Jones et al. 2008; B. M. Jones,

personal communication).

Multiple vehicles travelling in the same narrow track

caused more initial damage than when vehicles spread

out (Raynolds and Felix 1989). High-level disturbance

and trail subsidence persisted until 2009 only on narrow

camp-move trails. Only slight damage persisted on

camp-move trails where vehicles spread out.

Industry has made a concerted effort to change to less

damaging vehicles since the mid-1980s. Metal-tracked

survey vehicles have been replaced with less damaging

rubber-tracked vehicles. Survey vehicles cause less

damage and have been easier to upgrade because they

are relatively light and propel only themselves. The most

damaging camp support vehicles are still in use,

however, because camp tractors need weight and

traction to pull strings of five or more ski-mounted

trailers. In addition to mass, the shearing action of skis

can cut the vegetative mat and increase damage. Steel-

tracked D-7 Caterpillar tractors, which were the highest

ground pressure and most damaging vehicles used in

1984–1985 (psi 10.5 [¼72.4 kPa]), are still preferentially

used for current seismic exploration. Lighter, less

damaging rubber-tracked tractors (Case-brand agricul-

tural tractors, psi 4 [¼27.6 kPa]) are also used for pulling

camp trains, but they are expensive and less reliable

because they tend to lose traction on ice, soft snow, and

slopes. Loss of traction can increase damage as spinning

tracks attempt to regain traction. Thus, efforts to find

newer, less damaging vehicles should continue, particu-

larly a replacement for D-7 tractors and strings of camp

trailers.

Monitoring of seismic exploration impacts should

become routine. Currently, fly-by inspections for fuel

contamination, garbage, and trail damage soon after

exploration are done to assess impacts, but little

documentation is available to the public. A more

quantitative and transparent assessment is needed.

Monitoring recovery in areas with medium- to high-

level impacts is needed to learn from mistakes and

improve management strategies to further reduce

impacts.

Although some types of vehicles have been replaced

since exploration done in the mid-1980s, the results of

our study of impacts associated with exploration during

that period are still relevant to exploration with current

technology. First, our study provides most of the

information available on long-term damage; no new

studies with this amount of detail have been initiated

(NRC 2003). Second, medium to high levels of damage

from seismic exploration are still occurring. Kemper and

Macdonald (2009b) report that initial impacts to upland

tundra from current exploration on the MacKenzie

River Delta, Canada, are similar to, or somewhat

greater than, initial impacts reported for trails created

during the earliest winter seismic exploration programs

in the same area 30 years previously (Bliss and Wein

1972, Hernandez 1973). A recent Environmental As-

sessment for seismic surveys in northern Alaska stated

that ‘‘seismic exploration may vary from having no

observable effects in some situations to damaging

vegetation to the extent that it may take years or even

decades to heal. These impacts occur despite existing

stipulations on operations, and cannot be further

mitigated, given the types of equipment currently used’’

(BLM 2008).

CONCLUSIONS

Monitoring the recovery of winter seismic trails for up

to 25 years showed that vehicle traffic over snow-

covered tundra can cause long-term changes to plant

communities and permafrost stability (Appendix E).

Short-term studies of winter vehicle disturbance had

predicted only short-term impacts. Early reports pre-

dicted that the impacts from the exploration program in

the Arctic NWR would be mainly aesthetic and there

was not likely to be long-lasting damage. The results of

our follow-up study contradict these predictions and

highlight the importance of long-term studies.

The amount of ice in the upper permafrost affected the

rate of recovery. Trails on ice-poor gravel substrates

recovered well even after extreme initial disturbance

because the substrate was stable and soil conditions for

plant growth did not change. Some trails on ice-rich,

fine-grained soils remained disturbed after 25 years

because changes in hydrology caused by ground subsi-
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dence led to shifts in vegetation composition. Those trails

are unlikely to recover to pre-disturbance conditions.

Given the extent of seismic exploration in the Arctic,

cumulative impacts of even small percentages of trails

with high disturbance can be significant (NRC 2003).

These impacts may not be fully evident from short-term

monitoring. No system exists for tracking the seismic

trails made every year in Alaska, so large areas of the

North Slope have an unknown amount of direct human

disturbance. Given the magnitude of ongoing seismic

exploration programs and the likelihood that some

medium- to high-level damage will occur, industry and

regulatory agencies should redouble their efforts to

avoid the long-term impacts that we have documented.
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Appendix A. Fitting the Bayesian hierarchical model.

For the fully Bayesian specification, distributions for all parameters need to be given. To complete the specification given in the main
article, we chose broad priors at this level so that they had little influence on the estimates, except to restrict the parameter space:

All parameters were estimated using Markov chain Monte Carlo (MCMC) methods in the statistical package (WinBUGS). For the
MCMC, we let the chain “burn in” for 10,000 samples, and then computed the means, standard errors, and percentiles based on the
next 100,000 simulations. We started the chain from several different points and obtained very similar results, and examination of the
trace of the chain did not reveal any irregularities. Typically, the autocorrelation within the chain for each parameter dropped to near
zero well before 30 iterations. For computer storage reasons, we thinned the chain and kept each 100th iteration. We changed prior
distributions as a sensitivity analysis and determined that the model was not sensitive to the prior distributions. Besides the parameter
estimates, MCMC also allowed us to estimate the uncertainty of functions of the parameters, which we discuss next.

For each plant growth form and for seasonal soil thaw depth, a model was developed that hierarchically nested two factors affecting
plant recovery, vegetation type and initial disturbance level. For example, the response curves for soil thaw depths in one vegetation
type has only eight plot pairs, but the model ‘borrows strength’ from the next higher level in the model, which includes all 49 plot
pairs (Fig. A1). The model’s algorithms allow the response curves for each vegetation type and each initial disturbance level to
diverge from the global curve for all 49 plots by amounts that vary depending on sample size and within-type variability. Figure A1
also demonstrates a method to estimate time to recovery. For discussion purposes, we chose to define recovery as a return to an
absolute difference of +5 or -5% cover for plant growth forms and +5 or -5 cm for thaw depth. The credibility interval on the
estimate is given by the solid black line, which runs horizontally between the lower bound to the upper bound of the curve. Here the
credibility interval is shown only for high-level disturbance. The same procedure can be applied to other recovery thresholds.
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   FIG. A1. Example of fitted model for soil thaw depths in Sedge-Willow Tundra only. Each data point is the absolute difference
between soil thaw depths (cm) at one plot pair (disturbed, reference). The short-dashed line is the 95% credibility envelope of the
fitted model for the highest level of initial disturbance. Credibility envelopes for medium and low level disturbance are not shown.
The estimated time to recovery is the time (here, approximately year 7 for high disturbance) where the curve crosses the +5%
difference line (dash-dot). The credibility interval on that estimate is given by the thick black line (here, approximately 5.5–8.5
years), which runs horizontally between the lower bound to the upper bound of the curve.
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Appendix B. Six sets of graphs show fitted models of response of graminoids, deciduous shrubs, forbs and horsetails, lichens, bryophytes,
and evergreen shrubs to three initial levels of winter vehicle disturbance in five tundra vegetation types in arctic Alaska. Differences are
percent cover in disturbed plot minus percent cover in adjacent reference plot. The short-dashed line is the 95% credibility envelope of the
fitted model for the highest level of initial disturbance. The variance components are θt(temporal), θs(spatial), and θn(nugget).

Ecological Archives A020-004-A2 http://esapubs.org/Archive/appl/A020/004/appendix-B.htm

1 of 7 6/23/2010 3:28 PM



 
 

Ecological Archives A020-004-A2 http://esapubs.org/Archive/appl/A020/004/appendix-B.htm

2 of 7 6/23/2010 3:28 PM



 
 

Ecological Archives A020-004-A2 http://esapubs.org/Archive/appl/A020/004/appendix-B.htm

3 of 7 6/23/2010 3:28 PM



 

Ecological Archives A020-004-A2 http://esapubs.org/Archive/appl/A020/004/appendix-B.htm

4 of 7 6/23/2010 3:28 PM



 

Ecological Archives A020-004-A2 http://esapubs.org/Archive/appl/A020/004/appendix-B.htm

5 of 7 6/23/2010 3:28 PM



 
 

Ecological Archives A020-004-A2 http://esapubs.org/Archive/appl/A020/004/appendix-B.htm

6 of 7 6/23/2010 3:28 PM



[Back to A020-004]

Ecological Archives A020-004-A2 http://esapubs.org/Archive/appl/A020/004/appendix-B.htm

7 of 7 6/23/2010 3:28 PM



Ecological Archives A020-004-A3

Janet C. Jorgenson, Jay M. Ver Hoef, and M. T. Jorgenson. 2010. Long-term recovery patterns of arctic tundra
after winter seismic exploration. Ecological Applications 20:205–221.

Appendix C. Figures and discussion of distribution of disturbance levels on winter seismic trails, monitored over a 25 year period at 200
random–systematic plots on the trails.

Introduction

Seismic exploration was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, during the winters of 1984 and
1985. U.S. Fish and Wildlife Service initiated a monitoring program in 1984 to document vegetation and soil disturbance and natural
recovery. This appendix presents results from one part of the monitoring program, a sample of 200 random–systematic plots on the trails
that were visited over a 25 year period and rated for amount of disturbance.

Methods

Color-infrared aerial photographs (1:6000-scale) were taken of 20% of the trails in 1985 and 1988 and disturbance levels were photo-
interpreted at 4914 systematic plots (Raynolds and Felix 1989). Next, a two-stage cluster sample was used to randomly choose 200 of the
plots to monitor in the field. Twenty 3-km transects, each consisting of ten 18-m diameter circular plots spaced 300-m apart, were randomly
selected. A four-level system for rating vehicle disturbance based on vegetation and soil changes was used (Table 2 in main paper). Ratings
were assigned initially in 1985 by photo-interpretation and subsequently by field evaluations in 1989, 1993, 1998, 2002, 2005, and 2009. All
plots were visited in 1989. From 1993 to 2009, plots rated as undisturbed in a previous year were assumed to remain undisturbed thereafter
and were not revisited.

Disturbance and recovery were summarized by trail type (seismic line or camp move trail) and vegetation types, which included Wet Sedge
Tundra, Moist Sedge-Willow Tundra, Moist Sedge-Dryas Tundra, Moist Sedge-Tussock tundra, Shrub Tundra on high-centered polygons,
Riparian Shrublands, and Partially Vegetated (Table 1 in main paper). The vegetation type Dryas Terrace was not represented in the 200
plot sample, but data were available from the larger photo-interpreted sample. Ten randomly selected Dryas Terrace plots were photo-
interpreted in 1985 and visited in 1988 and 2007 to assess recovery.

Results and Discussion

Snow was usually less than 30 cm deep and did not provide complete protection from vehicle damage. The following summer most trails
had at least some scuffing of vegetation and deeper summer-thawed soil. The greatest damage was destruction of shrubs and sedge tussocks,
scraping of ground cover to bare soil, and standing water on trails. Tussock Tundra, Shrub Tundra, and Dryas Terrace were the vegetation
types with the highest initial disturbance (Fig. C1). About one half of these plots had medium and high-level disturbance in 1985.
Sedge-Dryas Tundra and Sedge-Willow Tundra were intermediate in disturbance levels, with medium- and high-level disturbance found at
about one third of the plots. Medium- and high-level disturbance was absent in Riparian Shrublands, which collect deep snow, and occurred
in <10% of plots in Wet Sedge Tundra. Partially Vegetated areas had negligible damage.

Recovery was rapid in the first decade as the percentage of disturbed plots decreased from 79% in 1985, to 48% in 1989, and to 11% in
1993. Recovery was slower after 1993. Five percent of plots were still disturbed in 2009. For points that initially had low level disturbance,
recovery was rapid. Twenty-three percent of all points had medium to high levels of disturbance in 1985 and these recovered more slowly.

Tussock Tundra and Sedge-Willow Tundra plots recovered well except for a few that remained wetter or subsided into troughs, causing a
change in vegetation type. Sedge-Dryas Tundra frequently subsided after medium to highly initial disturbance, with 19% of plots still
disturbed after 25 years. These sites had changed vegetation due to wetter conditions. Shrub Tundra and Dryas Terrace had some low level
disturbance remaining in 2007–2009, mainly patchy subsidence and vehicle ruts that did not subside. Plant community composition changes
at these sites were subtle, mainly decreased cover of shrubs.

Camp-move trails were made by vehicles with higher ground pressure than seismic lines and had more initial damage and slower recovery
(Fig. C2). By 1989, 32% of seismic trails were still disturbed compared to 64% of camp trails, including 41% at medium- and high-level
disturbance. By 2009, all seismic trail plots had recovered to a negligible disturbance level, whereas 9% of the camp trail plots were still
disturbed and one half of those had medium and high-level disturbance. Overall, 5% of plots were still disturbed in 2005. This translates to
200 km of disturbed trail, out of the original 4000 km of trails.

Previous studies of winter seismic vehicle disturbance in the Arctic predicted only short-term and mostly aesthetic impacts. Long-term
monitoring showed that most of the disturbance disappeared gradually, but that impacts to tundra vegetation persisted on a small percentage
of the trails up to 25 years after disturbance.
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   FIG. C1. Recovery of vehicle trails on different tundra vegetation types after winter seismic exploration in 1984 and 1985. Ratings
were photo-interpreted on color-infrared aerial photographs in 1985. All other years were rated in the field. Twenty-one plots on
unvegetated areas or partially vegetated gravel bars had negligible disturbance in all years and are not shown.

 

 
   FIG. C2. Recovery on seismic line trails vs. camp move trails. Ratings were photo-interpreted on color-infrared aerial photographs in
1985. All other years were rated in the field. Twenty plots with overlapping seismic lines and camp move trails are not shown.
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Appendix D. Disturbance and recovery by vegetation types.

Evaluating the recovery among differing vegetation types provides useful information for managing seismic
exploration programs to minimize long-term damage. In this Appendix we summarize study results for each of
the seven major vegetation types in the study area.

Wet Sedge Tundra incurred little vegetation damage from traffic and recovered rapidly because of the
dominance of the sedge growth form. Trails were very visible the first summer after exploration because dead
sedge leaves were compressed to the soil surface, making green leaves more visible (the ‘green trail’ effect),
and because leaf production and nutrient status increased (Emers et al. 1994). Recovery was aided by the
lack of evident thaw settlement, probably due to the low excess segregated ice contents associated with thick
peat horizons of Wet Sedge Tundra. Also, the saturated soil in wet sites freezes solid in winter, so winter
vehicle traffic does not cause soil displacement. Although we had insufficient samples to analyze the recovery
of Wet Sedge Tundra separately, a companion study that tracked disturbance at random plots found that 93%
of Wet Sedge plots had low or no initial disturbance (Appendix C). Wet Sedge Tundra and Riparian
Shrublands were the only types in which all plots recovered to level zero disturbance rating in the first
decade.

Most trails in Sedge-Willow Tundra exhibited the transient green trail effect, but had low initial disturbance
and recovered well by 2002. However, medium or high levels of initial disturbance often caused soil
subsidence and vegetation on the trails converted to Wet Sedge Tundra. Some of these trails remained highly
visible viewed from the air up to 24 years after disturbance and cannot be expected to return to the original
vegetation for many more decades. Without subsidence, the dominant sedges and deciduous shrubs recovered
to near reference levels within the first decade, although the bryophyte understory showed little recovery.

Trails on Tussock Tundra had greater initial impacts to graminoid cover than other vegetation types, because
of damage to raised tussocks of Eriophorum vaginatum. Trails recovered well if initial disturbance was low,
with good vegetative regrowth of damaged tussocks. On trails with higher levels of disturbance, most tussocks
were smashed and some trails subsided. Sedge cover increased above reference levels, mainly due to an
increase for Eriophorum angustifolium, causing some trails to remain visible from the air after two decades.
Deciduous shrubs generally recovered to pre-disturbance conditions in the first decade. Evergreen shrubs and
bryophytes were highly impacted initially and usually did not recover.

Trails on Shrub Tundra commonly had ruts, bare ground, and severe shrub damage. Evergreen shrubs were
very slow to recover. Some had not recovered after two decades, although trail subsidence was less visible
than in the other types, due to many natural troughs. Sections of shrub-dominated high centered polygons,
tundra areas raised by accumulation of ground ice, sometimes subsided into adjacent troughs as the ice melted
and were converted to sedge-dominated trough vegetation.

At many Sedge-Dryas Tundra plots disturbance increased over time, because of surface subsidence of 20–50
cm. Subsidence of up to 1 m was occasionally seen where trails crossed hill slopes, intercepting down-slope
flow of water. Vegetation recovery was poorer than in other types even where subsidence was not detectible.
Graminoid cover increased above reference levels and other plant growth forms did not recover after 18
years. Sedge-Dryas Tundra plots recovered less than Tussock Tundra, Shrub Tundra, and Dryas Terrace, even
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though those types had higher initial disturbance levels. Few other studies have documented the poor
resilience of this vegetation type to damage, perhaps because impacts are seldom monitored longer than 2–3
years. BLM (unpublished data) found that Dwarf Shrub Tundra, which includes this type and Dryas Terrace,
recovered the least of any type and was the only type with high-level disturbance remaining six years after
exploration. One quarter of their Dwarf Shrub plots had medium or high level disturbance after six years.
Moskalenko (1984) reported that vegetation recovery up to 10 years after very high level disturbances in
Siberian gas fields was poorer in this type than all other vegetation types studied and concluded that “total
restoration of the vegetation can never be expected”. She cited several attributes of this type of site that make
recovery difficult, including poor anchoring of soil by a naturally discontinuous vegetative mat, naturally
mixed soil horizons due to frost action, and abrupt changes in soil moisture after disturbance.

Riparian sites had good vegetation recovery, even at plots with extreme initial damage, because the ice-poor
gravel substrate did not subside. Dryas terraces normally have thin snow cover and were usually severely
damaged by winter vehicle traffic. They have a thin layer of organic soil over well-drained fluvial gravels
which allow the organic mat and plant roots to be easily damaged. This and other studies predicted long-term
damage. The prostrate shrubs, mosses, and lichens were easily damaged but recovered better than in most
other vegetation types, because there was no subsidence when thawed and conditions for plant growth did not
change. The dominant plant, the evergreen shrub Dryas integrifolia, is considered highly sensitive to
disturbance and was initially the most impacted shrub in this study. Recovery after 18 years was not
complete, but better than predicted by early reports from this study and other shorter-term studies.

Riparian shrublands had less initial damage than Dryas terraces because the taller willows collected
wind-blown snow that usually protected the ground cover. Willows were badly broken but they grew
vigorously after disturbance, as would be expected of plants adapted to herbivory. Riparian areas are
considered sensitive to vehicle disturbance and are frequently avoided by seismic crews, because the smashed
willows are unsightly the following summer. BLM (unpublished data) reported that Riparian Shrublands were
the most disturbed type after winter seismic exploration and remained more disturbed after six years than
most non-riparian types. This study shows that non-riparian types are actually more susceptible to long-term
damage.
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Appendix E. Collection of photos depicting seismic lines in 1984 and over time.

 
   PHOTO E1. D-7 caterpillar tractor pulling ski-mounted camp trailers during seismic exploration in
February 1984.
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   PHOTO E2. Seismic vibrator units in winter of 1985.

 

Ecological Archives A020-004-A5 http://esapubs.org/Archive/appl/A020/004/appendix-E.htm

2 of 12 6/23/2010 3:31 PM



 
   PHOTO E3. Seismic line in April 1984.
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   PHOTO E4. Camp–move trail made on Sedge-Dryas Tundra in March 1984. The adjacent reference plot had 1
in 1985 and trail had become a shallow trough by 2002.
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   PHOTO E5. Camp–move trail on Tussock Tundra in April 1984.
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   PHOTO E6. Trail photographed in March 1984 shows deep snow in swale in foreground and thin snow cover o
area in background.
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   PHOTO E7. Aerial photograph of seismic line made in winter of 1985 on Sedge-Willow
Tundra and photographed the following summer. The center of the trail is the survey line, the
heavy tracks to either side are from vibrator units and recording vehicles, and the side trails
are from single passes of smaller personnel vehicles.
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   PHOTO E8. Aerial photograph of seismic line and overlapping camp–move
trail made in winter of 1984, photographed in July 1984. Ruts in tussock tundra
subsided into a trough. In 2002, tussocks were growing back, but trail still had
only 5% cover of evergreen shrubs, compared to 30% in the surrounding tundra.
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   PHOTO E9. Aerial photograph in summer 1984 of tracks made by vehicles the
previous winter. Scraped soil hummocks are visible in foreground and prominent, but
shorter-lived "green trail effect" in background. Polygonal pattern is natural and is due
to vertical ice wedges under the troughs between polygons.
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   PHOTO E10. Highly disturbed trail on Sedge-Dryas Tundra, created by camp move vehicles in January 1984. C
photograph taken in August 1984 (above) shows trail as dark line, due to increased bare soil on trail. Photo span
east–west. Quickbird satellite image from August 2003 (middle, same scale) and photograph from airplane from
show troughs and two ponds that formed on trail when buried ice-wedges melted. Note general increase in patte
amount of water in ponds between 1984 and 2003, probably due to warming climate. However, zig-zag shaped t
were up to 1 m deep and no similar feature was seen off the trail

 

Ecological Archives A020-004-A5 http://esapubs.org/Archive/appl/A020/004/appendix-E.htm

10 of 12 6/23/2010 3:31 PM



Ecological Archives A020-004-A5 http://esapubs.org/Archive/appl/A020/004/appendix-E.htm

11 of 12 6/23/2010 3:31 PM



 
   PHOTO E11. Repeat photographs of seismic trail across a raised area with dwarf shrubs and moss, with
natural trough on right. 1989 photograph (top) shows collapse of the edge of the raised area into the adjacent
trough after vehicle traffic during 1985 exploration. 1993 photograph (bottom) shows the same location after
sedges had replaced the shrubs and mosses due to the altered moisture regime.
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