1,092 research outputs found

    Beyond Grids: Exploring Elastic Input Sampling for Vision Transformers

    Full text link
    Vision transformers have excelled in various computer vision tasks but mostly rely on rigid input sampling using a fixed-size grid of patches. This limits their applicability in real-world problems, such as in the field of robotics and UAVs, where one can utilize higher input elasticity to boost model performance and efficiency. Our paper addresses this limitation by formalizing the concept of input elasticity for vision transformers and introducing an evaluation protocol, including dedicated metrics for measuring input elasticity. Moreover, we propose modifications to the transformer architecture and training regime, which increase its elasticity. Through extensive experimentation, we spotlight opportunities and challenges associated with input sampling strategies

    Dielectric properties of healthy and diabetic alloxan-induced lenses in rabbits.

    Get PDF
    Abstract The dielectric properties of the eye lens were studied for healthy and alloxane-induced diabetic rabbits in the frequency range from 500 Hz to 100 kHz electric field and temperatures from 25 to 50 °C. In the full temperature range, the average relative permittivity and dielectric loss values for a healthy lens are lower than those recorded for diabetic tissue. Dielectric relaxation of polar amino acids on the alpha-crystallin surface with a characteristic frequency of 7 kHz in the range of 25–50 °C for healthy and diabetic samples is accompanied by the activation energy of proton conductivity with an average values of 33 and 39 kJ mol−1, respectively. The permittivity decrement, which characterizes the size of the dielectric dispersion with a central relaxation time of 0.023 ms for a diabetic sample, is more than twice as high as for a healthy sample. Measurements on the rabbit eye lens were carried out at ambient temperature above and below the physiological range, since these conditions provide an appropriate pattern of dielectric behavior for the diagnosis of clinical dysfunction of the human lens

    Nanocrystallization studies of rapidly quenched Fe85.4-xCoxZr6.8-yNbyB6.8Cu1 (x=0 or 42.7, y=0 or 1) alloys

    Get PDF
    The microstructure of amorphous and nanocrystalline Fe42.7Co42.7Zr6.8−xNbxB6.8Cu1 (x = 0 or 1) alloys was investigated. We have stated that the nanocrystalline samples consist of the crystalline α-FeCo grains about 8 nm in diameter embedded in an amorphous matrix which is rich in cobalt. From Mössbauer spectroscopy studies we have found that the crystalline α-FeCo phase in the nanocrystalline samples obtained by the conventional annealing is atomically ordered. Moreover, the order degree depends on the annealing time. As for the samples partially crystallized during rapid quenching, the crystalline α-FeCo phase is atomically disordered

    Nucleon-Gold Collisions at 200 AGeV Using Tagged d+Au Interactions in PHOBOS

    Get PDF
    Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d+Au, p+Au and n+Au collisions at sqrt(s_nn) = 200 GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p+Au and n+Au collisions in the data. A weighted combination of the yield of p+Au and n+Au is constructed to build a reference for Au+Au collisions that better matches the isospin composition of the gold nucleus. The p_T and centrality dependence of the yield of this improved reference system is found to match that of d+Au. The shape of the charged particle transverse momentum distribution is observed to extrapolate smoothly from pbar+p to central d+Au as a function of the charged particle pseudorapidity density. The asymmetry of positively- and negatively-charged hadron production in p+Au is compared to that of n+Au. No significant asymmetry is observed at mid-rapidity. These studies augment recent results from experiments at the LHC and RHIC facilities to give a more complete description of particle production in p+A and d+A collisions, essential for the understanding the medium produced in high energy nucleus-nucleus collisions.Comment: 17 pages, 18 figure

    Neurobeachin, a Regulator of Synaptic Protein Targeting, Is Associated with Body Fat Mass and Feeding Behavior in Mice and Body-Mass Index in Humans

    Get PDF
    Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/− mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity

    Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis

    Get PDF
    Although gibberellins (GAs) are well known for their growth control function, little is known about their effects on primary metabolism. Here the modulation of gene expression and metabolic adjustment in response to changes in plant (Arabidopsis thaliana) growth imposed on varying the gibberellin regime were evaluated. Polysomal mRNA populations were profiled following treatment of plants with paclobutrazol (PAC), an inhibitor of GA biosynthesis, and gibberellic acid (GA3) to monitor translational regulation of mRNAs globally. Gibberellin levels did not affect levels of carbohydrates in plants treated with PAC and/or GA3. However, the tricarboxylic acid cycle intermediates malate and fumarate, two alternative carbon storage molecules, accumulated upon PAC treatment. Moreover, an increase in nitrate and in the levels of the amino acids was observed in plants grown under a low GA regime. Only minor changes in amino acid levels were detected in plants treated with GA3 alone, or PAC plus GA3. Comparison of the molecular changes at the transcript and metabolite levels demonstrated that a low GA level mainly affects growth by uncoupling growth from carbon availability. These observations, together with the translatome changes, reveal an interaction between energy metabolism and GA-mediated control of growth to coordinate cell wall extension, secondary metabolism, and lipid metabolism
    corecore