143 research outputs found

    Investigating the Growth of Algae Under Low Atmospheric Pressures for Potential Food and Oxygen Production on Mars

    Get PDF
    With long-term missions to Mars and beyond that would not allow resupply, a self-sustaining Bioregenerative Life Support System (BLSS) is essential. Algae are promising candidates for BLSS due to their completely edible biomass, fast growth rates and ease of handling. Extremophilic algae such as snow algae and halophilic algae may also be especially suited for a BLSS because of their ability to grow under extreme conditions. However, as indicated from over 50 prior space studies examining algal growth, little is known about the growth of algae at close to Mars-relevant pressures. Here, we explored the potential for five algae species to produce oxygen and food under low-pressure conditions relevant to Mars. These included Chloromonas brevispina, Kremastochrysopsis austriaca, Dunaliella salina, Chlorella vulgaris, and Spirulina plantensis. The cultures were grown in duplicate in a low-pressure growth chamber at 670 ± 20 mbar, 330 ± 20 mbar, 160 ± 20 mbar, and 80 ± 2.5 mbar pressures under continuous light exposure (62–70 μmol m–2 s–1). The atmosphere was evacuated and purged with CO2 after sampling each week. Growth experiments showed that D. salina, C. brevispina, and C. vulgaris were the best candidates to be used for BLSS at low pressure. The highest carrying capacities for each species under low pressure conditions were achieved by D. salina at 160 mbar (30.0 ± 4.6 × 105 cells/ml), followed by C. brevispina at 330 mbar (19.8 ± 0.9 × 105 cells/ml) and C. vulgaris at 160 mbar (13.0 ± 1.5 × 105 cells/ml). C. brevispina, D. salina, and C. vulgaris all also displayed substantial growth at the lowest tested pressure of 80 mbar reaching concentrations of 43.4 ± 2.5 × 104, 15.8 ± 1.3 × 104, and 57.1 ± 4.5 × 104 cells per ml, respectively. These results indicate that these species are promising candidates for the development of a Mars-based BLSS using low pressure (∼200–300 mbar) greenhouses and inflatable structures that have already been conceptualized and designed

    Urinary leukotriene E4 and prostaglandin D2 metabolites increase in adult and childhood severe asthma characterized by type 2 Inflammation : a clinical observational study

    Get PDF
    Rationale: New approaches are needed to guide personalized treatment of asthma.Objective: To test if urinary eicosanoid metabolites can direct asthma phenotyping.Methods: Urinary metabolites of prostaglandins (PG), cysteinyl-leukotrienes (LT) and isoprostanes were quantified in the Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes (U-BIOPRED) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy controls (HC). Validation was performed in 302 SA subjects followed-up after 12-18 months, and externally in 95 adolescents with asthma.Measurement and Main Results: Metabolite levels in HC were unrelated to age, BMI and sex, except for the PGE2-pathway. Eicosanoid levels were generally greater in MMA relative to HC, with further elevations in SA, except for PGE2-metabolites in males, which were the same or lower in non-smoking asthmatics as in HC. Metabolite levels were unchanged in asthmatics adherent to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas SA treated with omalizumab had lower levels of LTE4 and the PGD2 metabolite 2,3-dinor-11?-PGF2?. High levels of LTE4 and PGD2-metabolites were associated with lower lung-function, and increased levels of exhaled nitric oxide and eosinophil markers in blood, sputum and urine in U-BIOPRED and in adolescents with asthma. These type-2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study, and found to be as sensitive to detect T2 inflammation as the established biomarkers. Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new non-invasive approach for molecular phenotyping of adult and adolescent asthma

    Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation

    Get PDF
    Background: Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) to asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthmatic patients is unclear. Objective: We sought to explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthmatic patients. Methods: An IL-6TS gene signature obtained from air-liquid interface cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R was used to stratify lung epithelial transcriptomic data (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes [U-BIOPRED] cohorts) by means of hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis, and immunohistochemical analysis of bronchial biopsy specimens. Results: Activation of IL-6TS in air-liquid interface cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of patients with IL-6TS-high asthma with increased epithelial expression of IL-6TS-inducible genes in the absence of systemic inflammation. The IL-6TS-high subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings Toll-like receptor pathway genes were upregulated, whereas expression of cell junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, matrix metalloproteinase 3, macrophage inflammatory protein 1 beta, IL-8, and IL-1 beta. Conclusions: Local lung epithelial IL-6TS activation in the absence of type 2 airway inflammation defines a novel subset of asthmatic patients and might drive airway inflammation and epithelial dysfunction in these patients.Peer reviewe

    Stratification of asthma phenotypes by airway proteomic signatures

    Get PDF
    © 2019 Background: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. Objective: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. Methods: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. Results: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. Conclusion: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies

    Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation

    Get PDF
    Rationale Asthma phenotyping requires novel biomarker discovery. Objectives To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). Methods An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. Results In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. Conclusions The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF

    Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity

    Get PDF
    Constitutive receptor tyrosine kinase phosphorylation requires regulation of kinase and phosphatase activity to prevent aberrant signal transduction. A dynamic mechanism is described here in which the adaptor protein, growth factor receptor–bound protein 2 (Grb2), controls fibroblast growth factor receptor 2 (FGFR2) signaling by regulating receptor kinase and SH2 domain–containing protein tyrosine phosphatase 2 (Shp2) phosphatase activity in the absence of extracellular stimulation. FGFR2 cycles between its kinase-active, partially phosphorylated, nonsignaling state and its Shp2-dephosphorylated state. Concurrently, Shp2 cycles between its FGFR2-phosphorylated and dephosphorylated forms. Both reciprocal activities of FGFR2 and Shp2 were inhibited by binding of Grb2 to the receptor. Phosphorylation of Grb2 by FGFR2 abrogated its binding to the receptor, resulting in up-regulation of both FGFR2’s kinase and Shp2’s phosphatase activity. Dephosphorylation of Grb2 by Shp2 rescued the FGFR2–Grb2 complex. This cycling of enzymatic activity results in a homeostatic, signaling-incompetent state. Growth factor binding perturbs this background cycling, promoting increased FGFR2 phosphorylation and kinase activity, Grb2 dissociation, and downstream signaling. Grb2 therefore exerts constitutive control over the mutually dependent activities of FGFR2 and Shp2

    Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation

    Get PDF
    Rationale Asthma phenotyping requires novel biomarker discovery. Objectives To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). Methods An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. Results In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. Conclusions The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA

    Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation

    Get PDF
    Background: Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) with asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthma is unclear. Objective: To explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthma. Methods: An IL-6TS gene signature, obtained from air-liquid interface (ALI) cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R, was used to stratify lung epithelium transcriptomic data (U-BIOPRED cohorts) by hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis and immunohistochemical analysis of bronchial biopsies. Results: Activation of IL-6TS in ALI cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of IL-6TS. High asthma patients with increased epithelial expression of IL-6TS inducible genes in absence of systemic inflammation. The IL-6TS High subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings, TLR pathway genes were up-regulated while the expression of tight junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, MMP3, MIP-1β, IL-8 and IL-1β. Conclusions: Local lung epithelial IL-6TS activation in absence of type 2 airway inflammation defines a novel subset of asthmatics and may drive airway inflammation and epithelial dysfunction in these patients

    A randomised pragmatic trial of corticosteroid optimization in severe asthma using a composite biomarker algorithm to adjust corticosteroid dose versus standard care: study protocol for a randomised trial

    Get PDF
    Background: Patients with difficult-to-control asthma consume 50–60% of healthcare costs attributed to asthma and cost approximately five-times more than patients with mild stable disease. Recent evidence demonstrates that not all patients with asthma have a typical type 2 (T2)-driven eosinophilic inflammation. These asthmatics have been called ‘T2-low asthma’ and have a minimal response to corticosteroid therapy. Adjustment of corticosteroid treatment using sputum eosinophil counts from induced sputum has demonstrated reduced severe exacerbation rates and optimized corticosteroid dose. However, it has been challenging to move induced sputum into the clinical setting. There is therefore a need to examine novel algorithms to target appropriate levels of corticosteroid treatment in difficult asthma, particularly in T2-low asthmatics. This study examines whether a composite non-invasive biomarker algorithm predicts exacerbation risk in patients with asthma on high-dose inhaled corticosteroids (ICS) (± long-acting beta agonist) treatment, and evaluates the utility of this composite score to facilitate personalized biomarker-specific titration of corticosteroid therapy.Methods/design: Patients recruited to this pragmatic, multi-centre, single-blinded randomised controlled trial are randomly allocated into either a biomarker controlled treatment advisory algorithm or usual care group in a ratio of 4:1. The primary outcome measure is the proportion of patients with any reduction in ICS or oral corticosteroid dose from baseline to week 48. Secondary outcomes include the rate of protocol-defined severe exacerbations per patient per year, time to first severe exacerbation from randomisation, dose of inhaled steroid at the end of the study, cumulative dose of inhaled corticosteroid during the study, proportion of patients on oral corticosteroids at the end of the study, proportion of patients who decline to progress to oral corticosteroids despite composite biomarker score of 2, frequency of hospital admission for asthma, change in the 7-item Asthma Control Questionnaire (ACQ-7), Asthma Quality of Life Questionnaire (AQLQ), forced expiratory volume in 1 s (FEV1), exhaled nitric oxide, blood eosinophil count, and periostin levels from baseline to week 48. Blood will also be taken for whole blood gene expression; serum, plasma, and urine will be stored for validation of additional biomarkers.Discussion: Multi-centre trials present numerous logistical issues that have been addressed to ensure minimal bias and robustness of study conduct.Trial registration: ClinicalTrials.gov, NCT02717689. Registered on 16 March 2016
    corecore