CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Stratification of asthma phenotypes by airway proteomic signatures
Authors
Ian M. Adcock
H. Ahmed
+98 more
D. Allen
Charles Auffray
P. Badorrek
Per S. Bakke
S. Ballereau
Aruna T. Bansal
F. Baribaud
A. Bedding
A. F. Behndig
A. Berglind
A. Berton
J. Bigler
M. J. Boedigheimer
Joost Brandsma
P. Brinkman
Dominic Burg
A. Bush
K. Bønnelykke
D. Campagna
Massimo Caruso
C. Casaulta
A. Chaiboonchoe
Kian Fan Chung
Julie Corfield
Sven Erik Dahlen
T. Davison
B. De Meulder
Bertrand De Meulder
I. Delin
P. Dennison
Ratko Djukanović
P. Dodson
L. El Hadjam
D. Erzen
C. Faulenbach
K. Fichtner
N. Fitch
Caterina Folisi
E. Formaggio
Stephen J. Fowler
M. Gahlemann
G. Galffy
D. Garissi
T. Garret
J. Gent
E. Guillmant-Farry
Yike Guo
E. Henriksson
U. Hoda
J. M. Hohlfeld
Ildikó Horváth
Peter Howarth
X. Hu
A. James
K. Johnson
N. Jullian
G. Kerry
M. Klüglich
R. Knowles
J. R. Konradsen
K. Kretsos
L. Krueger
Norbert Krug
A. S. Lantz
C. Larminie
P. Latzin
D. Lefaudeux
Diane Lefaudeux
N. Lemonnier
L. A. Lowe
R. Lutter
Rene Lutter
A. Manta
A. Mazein
L. McEvoy
A. Menzies-Gow
Paolo Montuschi
N. Mores
C. S. Murray
K. Nething
Ben Nicholas
U. Nihlén
Ioannis Pandis
John Riley
Anthony Rowe
Marek Sanak
Thomas Sandström
James P.R. Schofield
Dominick E. Shaw
Paul J. Skipp
Ana R. Sousa
Doroteya Staykova
Peter J. Sterk
Fabio Strazzeri
Kai Sun
Jonathan Ward
Susan Wilson
Yang Xian
Publication date
1 July 2019
Publisher
'Elsevier BV'
Doi
Cite
Abstract
© 2019 Background: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. Objective: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. Methods: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. Results: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. Conclusion: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Repository@Nottingham
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:nottingham-repository.work...
Last time updated on 02/10/2020