41 research outputs found

    A waterbody typology derived from catchment controls using self-organising maps

    Get PDF
    Multiple catchment controls contribute to the geomorphic functioning of river systems at the reach-level, yet only a limited number are usually considered by river scientists and managers. This study uses multiple morphometric, geological, climatic and anthropogenic catchment characteristics to produce a single national typology of catchment controls in England and Wales. Self-organising maps, a machine learning technique, are used to reduce the complexity of the GIS-derived characteristics to classify 4485 Water Framework Directive waterbodies into seven types. The waterbody typology is mapped across England and Wales, primarily reflecting an upland to lowland gradient in catchment controls and secondarily reflecting the heterogeneity of the catchment landscape. The seven waterbody types are evaluated using reach-level physical habitat indices (including measures of sediment size, flow, channel modification and diversity) extracted from River Habitat Survey data. Significant differences are found between each of the waterbody types for most habitat indices suggesting that the GIS-derived typology has functional application for reach-level habitats. This waterbody typology derived from catchment controls is a valuable tool for understanding catchment influences on physical habitats. It should prove useful for rapid assessment of catchment controls for river management, especially where regulatory compliance is based on reach-level monitoring

    Master plan: new state university in East Central Florida.

    Get PDF
    The preliminary master plan for what would become the University of Central Florida. It consists of drawings and overlays for building placement, pedestrian and vehicle traffic, and the locations of the various colleges.https://stars.library.ucf.edu/floridaheritage/1051/thumbnail.jp

    Efficient intra- and inter-night linking of asteroid detections using kd-trees

    Get PDF
    The Panoramic Survey Telescope And Rapid Response System (Pan-STARRS) under development at the University of Hawaii's Institute for Astronomy is creating the first fully automated end-to-end Moving Object Processing System (MOPS) in the world. It will be capable of identifying detections of moving objects in our solar system and linking those detections within and between nights, attributing those detections to known objects, calculating initial and differentially-corrected orbits for linked detections, precovering detections when they exist, and orbit identification. Here we describe new kd-tree and variable-tree algorithms that allow fast, efficient, scalable linking of intra and inter-night detections. Using a pseudo-realistic simulation of the Pan-STARRS survey strategy incorporating weather, astrometric accuracy and false detections we have achieved nearly 100% efficiency and accuracy for intra-night linking and nearly 100% efficiency for inter-night linking within a lunation. At realistic sky-plane densities for both real and false detections the intra-night linking of detections into `tracks' currently has an accuracy of 0.3%. Successful tests of the MOPS on real source detections from the Spacewatch asteroid survey indicate that the MOPS is capable of identifying asteroids in real data.Comment: Accepted to Icaru

    The Pan-STARRS Moving Object Processing System

    Full text link
    We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves > 99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a non-physical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains >99.5% efficient at detecting objects on a single night but drops to 80% efficiency at producing orbits for objects detected on multiple nights. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.Comment: 57 Pages, 26 Figures, 13 Table

    Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector

    Get PDF
    Background: Regulator of G-protein signaling (RGS) proteins have been well-described as accelerators of Ga-mediated GTP hydrolysis (‘‘GTPase-accelerating proteins’’ or GAPs). However, RGS proteins with complex domain architectures are now known to regulate much more than Ga GTPase activity. RGS14 contains tandem Ras-binding domains that have been reported to bind to Rap- but not Ras GTPases in vitro, leading to the suggestion that RGS14 is a Rap-specific effector. However, more recent data from mammals and Drosophila imply that, in vivo, RGS14 may instead be an effector of Ras.Methodology/Principal Findings: Full-length and truncated forms of purified RGS14 protein were found to bind indiscriminately in vitro to both Rap- and Ras-family GTPases, consistent with prior literature reports. In stark contrast, however, we found that in a cellular context RGS14 selectively binds to activated H-Ras and not to Rap isoforms. Co- transfection / co-immunoprecipitation experiments demonstrated the ability of full-length RGS14 to assemble a multiprotein complex with components of the ERK MAPK pathway in a manner dependent on activated H-Ras. Small interfering RNA-mediated knockdown of RGS14 inhibited both nerve growth factor- and basic fibrobast growth factor- mediated neuronal differentiation of PC12 cells, a process which is known to be dependent on Ras-ERK signaling.Conclusions/Significance: In cells, RGS14 facilitates the formation of a selective Ras?GTP-Raf-MEK-ERK multiprotein complex to promote sustained ERK activation and regulate H-Ras-dependent neuritogenesis. This cellular function for RGS14 is similar but distinct from that recently described for its closely-related paralogue, RGS12, which shares the tandem Ras- binding domain architecture with RGS14

    Giáo trình ngữ nghĩa học

    No full text
    293 tr. ; 21 cm

    Semantics : a coursebook

    No full text
    viii, 293 hal; 21 c

    Semantics; a coursebook

    No full text
    viii + 29
    corecore