312 research outputs found

    On the origin of intrinsic alignment in cosmic shear measurements: an analytic argument

    Get PDF
    Galaxy intrinsic alignment can be a severe source of error in weak-lensing studies. The problem has been widely studied by numerical simulations and with heuristic models, but without a clear theoretical justification of its origin and amplitude. In particular, it is still unclear whether intrinsic alignment of galaxies is dominated by formation and accretion processes or by the effects of the instantaneous tidal field acting upon them. We investigate this question by developing a simple model of intrinsic alignment for elliptical galaxies, based on the instantaneous tidal field. Making use of the galaxy stellar distribution function, we estimate the intrinsic alignment signal and find that although it has the expected dependence on the tidal field, it is too weak to account for the observed signal. This is an indirect validation of the standard view that intrinsic alignment is caused by formation and/or accretion processes.Comment: 11 pages, 4 figures, accepted for publication on Astronomy & Astrophysic

    Disk formation in the collapse of supramassive neutron stars

    Full text link
    Short gamma-ray bursts (sGRBs) show a large diversity in their properties. This suggests that the observed phenomenon can be caused by different "central engines" or that the engine produces a variety of outcomes depending on its parameters, or possibly both. The most popular engine scenario, the merger of two neutron stars, has received support from the recent Fermi and INTEGRAL detection of a burst of gamma rays (GRB170817A) following the neutron star merger GW170817, but at the moment it is not clear how peculiar this event potentially was. Several sGRBs engine models involve the collapse of a supramassive neutron star that produces a black hole plus an accretion disk. We study this scenario for a variety of equations of states both via angular momentum considerations based on equilibrium models and via fully dynamical Numerical Relativity simulations. We obtain a broader range of disk forming configurations than earlier studies but we agree with the latter that none of these configurations is likely to produce a phenomenon that would be classified as an sGRB.Comment: accepted by MNRA

    Early evolution of newly born proto-neutron stars

    Get PDF
    A proto-neutron star (PNS) is the first phase of life of a neutron star, and is likely to origin from a core-collapse supernova. After about 200 ms from core-collapse, the PNS evolution may be modeled as a sequence of quasi-stationary configurations. These configurations depend on the PNS thermodynamic profiles, whose evolution largely depends upon the neutrino diffusion. We developed a new PNS evolutionary code that solves by iteration the neutrino number and energy transport equations together with the relativistic stellar structure equations assuming spherical symmetry. The neutrino cross sections are determined consistently with the underlying equation of state (EoS). To include the EoSs in the evolution, we devised and tested a new fitting formula for the interacting part of the baryon free-energy, valid at finite temperature and arbitrary degeneracy. Using our code, we provide estimates for the neutrino signal in the Super-Kamiokande III detector and the frequencies of the gravitational waves due to stellar oscillations, for three stellar masses and three nucleonic EoSs. For the first time we evolve a PNS with a nuclear many-body theory EoS in a consistent way, that is, we take into account realistic nuclear interactions in the computation of the neutrino cross sections. By including rotation in an effective way, we have also determined the time variation of the rotation frequency due to PNS contraction and neutrino angular momentum loss, and the gravitational wave signal due to rotation. We find that the mass shedding limit restricts the initial angular momentum. Consequently, the final rotation frequency has to be smaller than about 300 Hz for a PNS of about 1.6 solar masses whose EoS is described by the GM3 mean-field model

    Taxonomies for Reasoning About Cyber-physical Attacks in IoT-based Manufacturing Systems

    Get PDF
    The Internet of Things (IoT) has transformed many aspects of modern manufacturing, from design to production to quality control. In particular, IoT and digital manufacturing technologies have substantially accelerated product development- cycles and manufacturers can now create products of a complexity and precision not heretofore possible. New threats to supply chain security have arisen from connecting machines to the Internet and introducing complex IoT-based systems controlling manufacturing processes. By attacking these IoT-based manufacturing systems and tampering with digital files, attackers can manipulate physical characteristics of parts and change the dimensions, shapes, or mechanical properties of the parts, which can result in parts that fail in the field. These defects increase manufacturing costs and allow silent problems to occur only under certain loads that can threaten safety and/or lives. To understand potential dangers and protect manufacturing system safety, this paper presents two taxonomies: one for classifying cyber-physical attacks against manufacturing processes and another for quality control measures for counteracting these attacks. We systematically identify and classify possible cyber-physical attacks and connect the attacks with variations in manufacturing processes and quality control measures. Our taxonomies also provide a scheme for linking emerging IoT-based manufacturing system vulnerabilities to possible attacks and quality control measures

    Using ion beams to tune the nanostructure and optical response of co-deposited Ag : BBBN thin films

    Get PDF
    The present study is devoted to co-deposited Ag : BN nanocermet thin films and is focused on the influence of ion irradiation conditions on their structural and linear optical properties. Ion irradiation was performed in situ during the growth of the nanocermets using a 50 eV assistance beam (nitrogen/argon or nitrogen-ion assistance) and ex situ on as-grown films using a 120 keV argon-ion beam (post-irradiation). Grazing incidence small-angle x-ray scattering measurements show that (i) as-grown N-assisted films contain prolate spheroidal clusters (height-to-diameter ratio H/D ≈ 1.8), (ii) N/Ar-ion assistance leads to the formation of more elongated clusters (H/D ≈ 2.1) and (iii) post-irradiation leads to a decrease of H/D to a value close to 1. These results are discussed on the basis of atomic diffusion processes involved during the growth of the nanocermets and during the post-irradiation. The optical transmittance spectra of these films measured at normal incidence display one absorption band, due to the excitation of the (1,1) plasmon mode of the clusters. In the case of the as-grown films, an additional band appears at oblique incidence for P-polarized light, as a consequence of the excitation of the (1,0) plasmon mode of the clusters. Our results show that the spectral position of the absorption bands (which can be tuned in the 400-600 nm range) depends on the H/D ratio of the clusters, in good agreement with calculations of optical transmittance considering the nanocomposite layer as a uniaxial anisotropic medium whose dielectric tensor is described by an anisotropic Maxwell-Garnett model. © 2007 IOP Publishing Ltd.The authors would like to thank CNRS-CSIC and Picasso programmes for financial support which permitted the collaboration between the Instituto de Ciencia de Materiales de Sevilla (Spain) and the Laboratoire de Metallurgie Physique ´ de Poitiers (France). The authors also thank J P Simon and the D2AM staff at the ESRF for their support during the GISAXS measurements.Peer Reviewe

    Internal alignments of red versus blue discs in dark matter haloes

    Get PDF
    Large surveys have shown that red galaxies are preferentially aligned with their haloes, while blue galaxies have a more isotropic distribution. Since haloes generally align with their filaments, this introduces a bias in the measurement of the cosmic shear from weak lensing. It is therefore vitally important to understand why this difference arises. We explore the stability of different disc orientations within triaxial haloes. We show that, in the absence of gas, the disc orientation is most stable when its spin is along the minor axis of the halo. Instead when gas cools on to a disc, it is able to form in almost arbitrary orientation, including off the main planes of the halo (but avoiding an orientation perpendicular to the halo's intermediate axis). Substructure helps gasless galaxies reach alignment with the halo faster, but has less effect on galaxies when gas is cooling on to the disc. Our results provide a novel and natural interpretation for why red, gas poor galaxies are preferentially aligned with their halo, while blue, star-forming, galaxies have nearly random orientations, without requiring a connection between galaxies' current star formation rate and their merger history
    corecore