53 research outputs found

    Thermal analysis of the plasma membrane Ca 2+ - ATPase

    Get PDF
    Abstract The plasma membrane Ca 2+ -ATPase is a well known enzyme in eucaryotes able to extrude calcium to the extracellular space in order to restore intracellular calcium to very low levels. This ATPase needs plasma membrane lipids such as acidic phospholipids in order to maintain its activity. In this study, we investigated the role that calcium and cholesterol play on the thermal stability of the Ca 2+ -ATPase isolated from cardiac sarcolemma and erythrocyte membranes. Calcium showed a stabilizing and protective effect when the enzyme was exposed to high temperatures. This stabilizing effect showed by calcium was potentiated in the presence of cholesterol. These protection effects were reflected on several thermodynamic parameters such as T 50 , ∆H vh and apparent ∆G, indicating that calcium might induce a conformational change stabilized in the presence of cholesterol that confers enzyme thermostability. The effect shown by cholesterol on ∆H vh and apparent ∆H ‡ open the possibility that this lipid decreases cooperativity during the induced transition. Despite that a binding site for cholesterol has not been identified in the plasma membrane Ca 2+ -ATPase, our results supports the proposal that this lipid interacts with the enzyme in a direct fashion. (Mol Cel

    Amyloidogenic Properties of a D/N Mutated 12 Amino Acid Fragment of the C-Terminal Domain of the Cholesteryl-Ester Transfer Protein (CETP)

    Get PDF
    The cholesteryl-ester transfer protein (CETP) facilitates the transfer of cholesterol esters and triglycerides between lipoproteins in plasma where the critical site for its function is situated in the C-terminal domain. Our group has previously shown that this domain presents conformational changes in a non-lipid environment when the mutation D470N is introduced. Using a series of peptides derived from this C-terminal domain, the present study shows that these changes favor the induction of a secondary β-structure as characterized by spectroscopic analysis and fluorescence techniques. From this type of secondary structure, the formation of peptide aggregates and fibrillar structures with amyloid characteristics induced cytotoxicity in microglial cells in culture. These supramolecular structures promote cell cytotoxicity through the formation of reactive oxygen species (ROS) and change the balance of a series of proteins that control the process of endocytosis, similar to that observed when β-amyloid fibrils are employed. Therefore, a fine balance between the highly dynamic secondary structure of the C-terminal domain of CETP, the net charge, and the physicochemical characteristics of the surrounding microenvironment define the type of secondary structure acquired. Changes in this balance might favor misfolding in this region, which would alter the lipid transfer capacity conducted by CETP, favoring its propensity to substitute its physiological function

    The Hemorrhagic Coli Pilus (HCP) of Escherichia coli O157:H7 Is an Inducer of Proinflammatory Cytokine Secretion in Intestinal Epithelial Cells

    Get PDF
    Enterohemorrhagic Escherichia coli (EHEC) O157:H7, the causative agent of hemorrhagic colitis and the hemolytic uremic syndrome (HUS), produces long bundles of type IV pili (TFP) called hemorrhagic coli pili (HCP). HCP are capable of mediating several phenomena associated with pathogenicity: i) adherence to human and bovine epithelial cells; ii) invasion of epithelial cells; iii) hemagglutination of rabbit erythrocytes; iv) biofilm formation; v) twitching motility; and vi) specific binding to laminin and fibronectin. HCP are composed of a 19 kDa pilin subunit (HcpA) encoded by the hcpA chromosomal gene (called prepilin peptidase-dependent gene [ppdD] in E. coli K-12).In this study we investigated the potential role of HCP of E. coli O157:H7 strain EDL933 in activating the release of pro- and anti-inflammatory cytokines from a variety of host epithelial cells. We found that purified HCP and a recombinant HcpA protein induced significant release of IL-8 and TNF-alpha, from cultured polarized intestinal cells (T84 and HT-29 cells) and non-intestinal HeLa cells. Levels of proinflammatory IL-8 and TNF-alpha, but not IL-2, IL6, or IL-10 cytokines, were increased in the presence of HCP and recombinant HcpA after 6 h of incubation with >or=50 ng/ml of protein, suggesting that stimulation of IL-8 and TNF-alpha are dose and time-dependent. In addition, we also demonstrated that flagella are potent inducers of cytokine production. Furthermore, MAPK activation kinetics studies showed that EHEC induces p38 phosphorylation under HCP-producing conditions, and ERK1/2 and JNK activation was detectable after 3 h of EHEC infection. HT-29 cells were stimulated with epidermal growth factor stimulation of HT-29 cells for 30 min leading to activation of three MAPKs.The HcpA pilin monomer of the HCP produced by EHEC O157:H7 is a potent inducer of IL-8 and TNF-alpha release, an event which could play a significant role in the pathogenesis of hemorrhagic colitis caused by this pathogen

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    The Calcium transporting properties of the cardiac cell membrane

    No full text
    Imperial Users onl

    A Novel β-adaptin/c-Myc Complex Formation Modulated by Oxidative Stress in the Control of the Cell Cycle in Macrophages and its Implication in Atherogenesis

    No full text
    Abstract Our study tested the proposal that c-Myc activation in macrophages is differentially carried out dependent on the intracellular oxidative state of cells and potentially associated to the process of atherogenesis. Under our experimental conditions, the generation of reactive oxygen species carried out by the presence of oxidized low density lipoproteins (oxLDL) or Gram negative bacterial lipopolysaccharides (LPS) modifies the expression of cellular adhesion molecules such as c-Abl, calcium transport proteins such as the plasma membrane Ca2+-ATPase (PMCA), CD47, procaspase-7, CASP7, CHOP, transcriptional activators such as c-Jun and c-Myc and molecules that participate in the process of endocytosis like α- and β-adaptin. We present the first evidence showing that a state of oxidative stress alters c-Myc-dependent activity pathways in macrophages through binding to molecules such as β-adaptin promoting the reversible formation of a complex that presents the ability to regulate the development of the cell cycle. We propose that the subtle regulation carried out through the formation of this c-Myc/β-adaptin complex when cells change from a normal physiological condition to a state of oxidative stress, represents a defense mechanism against the deleterious effects caused by the loss of cell homeostasis

    Oxidative stress impairs endocytosis of the scavenger receptor class

    No full text
    Abstract We report the characterization of a cell system employing Chinese hamster ovary (CHO) cells and CHO cells transfected with the scavenger receptor class A (CHO-SRA) using extracellularly produced reactive oxygen species (ROS) in order to study the endocytic function of the scavenger receptor. The oxidative environment was produced using tert-butyl hydroperoxide (TBH) and characterized by flow cytometry and cell viability. Once an adequate oxidative environment was established, binding and internalization studies of radiolabeled acetylated LDL particles ( 125 I-labeled Ac-LDL) with CHO-SRA cells were carried out. RT-PCR analysis using total RNAs from CHO-SRA cells revealed that oxidative stress does not alter the expression of the scavenger receptor. However, internalization of 125 I-labeled Ac-LDL through this receptor carried out by these cells was completely abolished under extracellularly oxidative conditions. Together, these results support the idea that an oxidative stress produced extracellularly, inhibiting the endocytosis of the scavenger receptor, could help to understand and explain the mechanisms by which several physiologically important ligands are accumulated in the extracellular space with its consequent cell damage

    The Influence of Interdisciplinary Work towards Advancing Knowledge on Human Liver Physiology

    No full text
    The knowledge accumulated throughout the years about liver regeneration has allowed a better understanding of normal liver physiology, by reconstructing the sequence of steps that this organ follows when it must rebuild itself after being injured. The scientific community has used several interdisciplinary approaches searching to improve liver regeneration and, therefore, human health. Here, we provide a brief history of the milestones that have advanced liver surgery, and review some of the new insights offered by the interdisciplinary work using animals, in vitro models, tissue engineering, or mathematical models to help advance the knowledge on liver regeneration. We also present several of the main approaches currently available aiming at providing liver support and overcoming organ shortage and we conclude with some of the challenges found in clinical practice and the ethical issues that have concomitantly emerged with the use of those approaches
    corecore