51 research outputs found
Children With Developmental Coordination Disorder Show Altered Visuomotor Control During Stair Negotiation Associated With Heightened State Anxiety
Safe stair negotiation is an everyday task that children with developmental coordination disorder (DCD) are commonly thought to struggle with. Yet, there is currently a paucity of research supporting these claims. We investigated the visuomotor control strategies underpinning stair negotiation in children with (N = 18, age = 10.50 ± 2.04 years) and without (N = 16, age = 10.94 ± 2.08 years) DCD by measuring kinematics, gaze behavior and state anxiety as they ascended and descended a staircase. A questionnaire was administered to determine parents' confidence in their child's ability to safely navigate stairs and their child's fall history (within the last year). Kinematics were measured using three-dimensional motion capture (Vicon), whilst gaze was measured using mobile eye-tracking equipment (Pupil labs). The parents of DCD children reported significantly lower confidence in their child's ability to maintain balance on the stairs and significantly more stair-related falls in the previous year compared to the parents of typically developing (TD) children. During both stair ascent and stair descent, the children with DCD took longer to ascend/descend the staircase and displayed greater handrail use, reflecting a more cautious stair negotiation strategy. No differences were observed between groups in their margin of stability, but the DCD children exhibited significantly greater variability in their foot-clearances over the step edge, which may increase the risk of a fall. For stair descent only, the DCD children reported significantly higher levels of state anxiety than the TD children and looked significantly further along the staircase during the initial entry phase, suggesting an anxiety-related response that may bias gaze toward the planning of future stepping actions over the accurate execution of an ongoing step. Taken together, our findings provide the first quantifiable evidence that (a) safe stair negotiation is a significant challenge for children with DCD, and that (b) this challenge is reflected by marked differences in their visuomotor control strategies and state anxiety levels. Whilst it is currently unclear whether these differences are contributing to the frequency of stair-related falls in children with DCD, our findings pave the way for future research to answer these important questions
Essential Role of Neuron-Enriched Diacylglycerol Kinase (DGK), DGKβ in Neurite Spine Formation, Contributing to Cognitive Function
BACKGROUND: Diacylglycerol (DG) kinase (DGK) phosphorylates DG to produce phosphatidic acid (PA). Of the 10 subtypes of mammalian DGKs, DGKbeta is a membrane-localized subtype and abundantly expressed in the cerebral cortex, hippocampus, and caudate-putamen. However, its physiological roles in neurons and higher brain function have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: We, therefore, developed DGKbeta KO mice using the Sleeping Beauty transposon system, and found that its long-term potentiation in the hippocampal CA1 region was reduced, causing impairment of cognitive functions including spatial and long-term memories in Y-maze and Morris water-maze tests. The primary cultured hippocampal neurons from KO mice had less branches and spines compared to the wild type. This morphological impairment was rescued by overexpression of DGKbeta. In addition, overexpression of DGKbeta in SH-SY5Y cells or primary cultured mouse hippocampal neurons resulted in branch- and spine-formation, while a splice variant form of DGKbeta, which has kinase activity but loses membrane localization, did not induce branches and spines. In the cells overexpressing DGKbeta but not the splice variant form, DGK product, PA, was increased and the substrate, DG, was decreased on the plasma membrane. Importantly, lower spine density and abnormality of PA and DG contents in the CA1 region of the KO mice were confirmed. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that membrane-localized DGKbeta regulates spine formation by regulation of lipids, contributing to the maintenance of neural networks in synaptic transmission of cognitive processes including memory
Measurement of D s <sup>±</sup> production asymmetry in pp collisions at √s=7 and 8 TeV
The inclusive production asymmetry is measured in collisions
collected by the LHCb experiment at centre-of-mass energies of
and 8 TeV. Promptly produced mesons are used, which decay as
, with . The measurement is
performed in bins of transverse momentum, , and rapidity, ,
covering the range GeV and . No kinematic
dependence is observed. Evidence of nonzero production asymmetry is
found with a significance of 3.3 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2018-010.htm
Search for CP violation in Λb0→pK− and Λb0→pπ− decays
A search for CP violation in Λb0→pK− and Λb0→pπ− decays is presented using a sample of pp collisions collected with the LHCb detector and corresponding to an integrated luminosity of 3.0fb−1. The CP -violating asymmetries are measured to be ACPpK−=−0.020±0.013±0.019 and ACPpπ−=−0.035±0.017±0.020, and their difference ACPpK−−ACPpπ−=0.014±0.022±0.010, where the first uncertainties are statistical and the second systematic. These are the most precise measurements of such asymmetries to date
Binary Black Hole Mergers in the first Advanced LIGO Observing Run
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range . These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections
Search for dark photons produced in 13 TeV collisions
Searches are performed for both promptlike and long-lived dark photons,
A
0
, produced in proton-proton
collisions at a center-of-mass energy of 13 TeV, using
A
0
→
μ
þ
μ
−
decays and a data sample corresponding
to an integrated luminosity of
1
.
6
fb
−
1
collected with the LHCb detector. The promptlike
A
0
search covers
the mass range from near the dimuon threshold up to 70 GeV, while the long-lived
A
0
search is restricted to
the low-mass region
214
<m
ð
A
0
Þ
<
350
MeV. No evidence for a signal is found, and 90% confidence
level exclusion limits are placed on the
γ
–
A
0
kinetic-mixing strength. The constraints placed on promptlike
dark photons are the most stringent to date for the mass range
10
.
6
<m
ð
A
0
Þ
<
70
GeV, and are
comparable to the best existing limits for
m
ð
A
0
Þ
<
0
.
5
GeV. The search for long-lived dark photons is the
first to achieve sensitivity using a displaced-vertex signature
Measurement of asymmetry in decays
We report the measurements of the -violating parameters in decays observed in collisions, using a data set corresponding to an integrated luminosity of recorded with the LHCb detector. We measure , , , , , where the uncertainties are statistical and systematic, respectively. These parameters are used together with the world-average value of the mixing phase, , to obtain a measurement of the CKM angle from decays, yielding \gamma = (128\,_{-22}^{+17})^\circ modulo , where the uncertainty contains both statistical and systematic contributions. This corresponds to evidence for violation in the interference between decay and decay after mixing.We report the measurements of the CP -violating parameters in B → D K decays observed in pp collisions, using a data set corresponding to an integrated luminosity of 3.0 fb recorded with the LHCb detector. We measure C = 0.73 ± 0.14 ± 0.05, A = 0.39 ± 0.28 ± 0.15, , S = −0.52 ± 0.20 ± 0.07, , where the uncertainties are statistical and systematic, respectively. These parameters are used together with the world-average value of the B mixing phase, −2β , to obtain a measurement of the CKM angle γ from B → D K decays, yielding γ = (128 )° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This corresponds to 3.8 σ evidence for CP violation in the interference between decay and decay after mixing
Measurement of the electron reconstruction efficiency at LHCb
The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fb−1 of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B+→ J/ψ(e+e−)K+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. These correction factors allow LHCb to measure branching fractions involving single electrons with a systematic uncertainty below 1%
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
Influence of step-surface visual properties on confidence, anxiety, dynamic stability, and gaze behaviour in young and older adults.
BACKGROUND: Step-surface visual properties are often associated with stair falls. However, evidence for decorating stairs typically concerns the application of step-edge highlighters rather than the entire step-surface. Here we examine the influence of step-surface visual properties on stair descent safety, with a view to generating preliminary evidence for safe stair décor. METHODS: Fourteen young (YA: 23.1 ± 3.7 years), 13 higher (HAOA: 67 ± 3.5) and 14 lower (LAOA: 73.4 ± 5.7) ability older adults descended a seven-step staircase. Older adults were stratified based on physiological/cognitive function. Step-surface décor patterns assessed were: Black and white (Busy); fine grey (Plain); and striped multicolour (Striped); each implemented with/without black edge-highlighters (5.5 cm width) totalling six conditions. Participants descended three times per condition. Confidence was assessed prior to, and anxiety following, the first descent in each condition. 3D kinematics (Vicon) quantified descent speed, margin of stability, and foot clearances with respect to step-edges. Eye tracking (Pupil-labs) recorded gaze. Data from three phases of descent (entry, middle, exit) were analysed. Linear mixed-effects models assessed within-subject effects of décor (×3) and edge highlighters (×2), between-subject effects of age (×3), and interactions between terms (α = p < .05). RESULTS: Décor: Plain décor reduced anxiety in all ages and abilities (p = .032, effect size: gav = 0.3), and increased foot clearances in YA and HAOA in the middle phase (p < .001, gav = 0.53), thus improving safety. In contrast, LAOA exhibited no change in foot clearance with Plain décor. Patterned décor slowed descent (Busy: p < .001, gav = 0.2), increased margins of stability (Busy: p < .001, gav = 0.41; Striped: p < .001, gav = 0.25) and reduced steps looked ahead (Busy: p = .053, gav = 0.25; Striped: p = .039, gav = 0.28) in all ages and abilities. This reflects cautious descent, likely due to more challenging conditions for visually extracting information about the spatial characteristics of the steps useful to guide descent. Edge highlighters: Step-edge highlighters increased confidence (p < .001, gav = 0.53) and reduced anxiety (p < .001, gav = 0.45) in all ages and abilities and for all décor, whilst removing them slowed descent in HAOA (p = .01, gav = 0.26) and LAOA (p = .003, gav = 0.25). Step-edge highlighters also increased foot clearance in YA and HAOA (p = .003, gav = 0.14), whilst LAOA older adults showed no adaptation. No change in foot clearances with décor or step-edge highlighters in LAOA suggests an inability to adapt to step-surface visual properties. CONCLUSION: Patterned step surfaces can lead to more cautious and demanding stair negotiation from the perspective of visually extracting spatial information about the steps. In contrast, plain décor with step edge highlighters improves safety. We therefore suggest plain décor with edge highlighters is preferable for use on stairs
- …