22 research outputs found

    Cardiometabolic risk factors and quality of life in severely obese children and adolescents in the Netherlands

    Get PDF
    BACKGROUND: The prevalence of severe obesity in children and adolescents is increasing. However, little is known about cardiometabolic risk factors and quality of life of children with severe obesity.Therefore, the aim of this study was to assess the demographic characteristics and the prevalence of cardiometabolic risk factors and quality of life in severely obese children and adolescents undergoing intensive inpatient treatment for obesity. METHODS: Data were collected between August 2009 and April 2011 on 16 children (8-13y) and 64 adolescents (13-19y) with severe obesity (SDS-BMI >= 3.0 or SDS-BMI >= 2.3 and comorbidity) participating in an RCT evaluating two intensive inpatient treatment programs for obesity. Demographic, anthropometric, clinical characteristics and two components of the EuroQol for the assessment of quality of life are described. RESULTS: Eighty percent of participants in this study had at least one cardiometabolic risk factor in addition to severe obesity. Low HDL-cholesterol and hypertension were most prevalent (65.0% respectively 31.2%). The highest significant correlations were found between SDS-BMI and SDS-waist circumference, fasting plasma insulin and HOMA-IR (correlation coefficients respectively 0.80, 0.49, and 0.48). With regard to quality of life, the mean utility score of the participants was 0.79 on a scale of 0.0 to 1.0 on the EuroQol questionnaire and their mean individual valuation was 69.1 on a scale of 0 to100. CONCLUSION: Cardiometabolic risk factors are already highly prevalent in this group of severely obese children and adolescents. The score of 69.1 found for quality of life in this study suggests that participants experience important limitations in their quality of life. However, quality of life is not associated with the prevalence of cardiometabolic risk factors. TRIAL REGISTRATION: Netherlands Trial Register (NTR1678, registered 20-Feb-2009)

    Association between TCF7L2 gene polymorphisms and susceptibility to Type 2 Diabetes Mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcription factor 7-like 2 (<it>TCF7L2</it>) has been shown to be associated with type 2 diabetes mellitus (T2MD) in multiple ethnic groups in the past two years, but, contradictory results were reported for Chinese and Pima Indian populations. The authors then performed a large meta-analysis of 36 studies examining the association of type 2 diabetes mellitus (T2DM) with polymorphisms in the <it>TCF7L2 </it>gene in various ethnicities, containing rs7903146 C-to-T (IVS3C>T), rs7901695 T-to-C (IVS3T>C), a rs12255372 G-to-T (IVS4G>T), and rs11196205 G-to-C (IVS4G>C) polymorphisms and to evaluate the size of gene effect and the possible genetic mode of action.</p> <p>Methods</p> <p>Literature-based searching was conducted to collect data and three methods, that is, fixed-effects, random-effects and Bayesian multivariate mete-analysis, were performed to pool the odds ratio (<it>OR</it>). Publication bias and study-between heterogeneity were also examined.</p> <p>Results</p> <p>The studies included 35,843 cases of T2DM and 39,123 controls, using mainly primary data. For T2DM and IVS3C>T polymorphism, the Bayesian <it>OR </it>for TT homozygotes and TC heterozygotes versus CC homozygote was 1.968 (95% credible interval (<it>CrI</it>): 1.790, 2.157), 1.406 (95% <it>CrI</it>: 1.341, 1.476), respectively, and the population attributable risk (PAR) for the TT/TC genotypes of this variant is 16.9% for overall. For T2DM and IVS4G>T polymorphism, TT homozygotes and TG heterozygotes versus GG homozygote was 1.885 (95%<it>CrI</it>: 1.698, 2.088), 1.360 (95% <it>CrI</it>: 1.291, 1.433), respectively. Four <it>OR</it>s among these two polymorphisms all yielded significant between-study heterogeneity (P < 0.05) and the main source of heterogeneity was ethnic differences. Data also showed significant associations between T2DM and the other two polymorphisms, but with low heterogeneity (<it>P </it>> 0.10). Pooled <it>OR</it>s fit a codominant, multiplicative genetic model for all the four polymorphisms of <it>TCF7L2 </it>gene, and this model was also confirmed in different ethnic populations when stratification of IVS3C>T and IVS4G>T polymorphisms except for Africans, where a dominant, additive genetic mode is suggested for IVS3C>T polymorphism.</p> <p>Conclusion</p> <p>This meta-analysis demonstrates that four variants of <it>TCF7L2 </it>gene are all associated with T2DM, and indicates a multiplicative genetic model for all the four polymorphisms, as well as suggests the <it>TCF7L2 </it>gene involved in near 1/5 of all T2MD. Potential gene-gene and gene-environmental interactions by which common variants in the <it>TCF7L2 </it>gene influence the risk of T2MD need further exploration.</p

    Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.Peer reviewe

    Association of genomic domains in BRCA1 and BRCA2 with prostate cancer risk and aggressiveness

    Get PDF
    Pathogenic sequence variants (PSV) in BRCA1 or BRCA2 (BRCA1/2) are associated with increased risk and severity of prostate cancer. Weevaluated whether PSVs inBRCA1/2 were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 BRCA1 and 171 BRCA2 male PSV carriers with prostate cancer, and 3,388 BRCA1 and 2,880 BRCA2 male PSV carriers without prostate cancer. PSVs in the 30 region of BRCA2 (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25-2.52; P = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63-5.95; P = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71-4.68; P = 0.00004) and elevated risk of Gleason 8+prostate cancer (HR = 4.95; 95% CI, 2.12-11.54; P = 0.0002). No genotype-phenotype associations were detected for PSVs in BRCA1. These results demonstrate that specific BRCA2 PSVs may be associated with elevated risk of developing aggressive prostate cancer. Significance: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual.Peer reviewe

    Neonatal glucocorticosteroid treatment causes systolic dysfunction and compensatory dilatation in early life:Studies in 4-week-old prepubertal rats

    No full text
    Glucocorticosteroid treatment is widely used to prevent chronic lung disease in premature infants, Recent studies in adult rats, treated with dexamethasone in the neonatal period, report negative long-term effects on the heart and severely reduced life expectancy. We treated neonatal rats with dexamethasone and studied cardiac function after 4 wk (prepubertal age) to investigate whether the late effects as previously described are preceded by detectable alterations in cardiac function at a younger age. Male rat pups (n = 12) were injected intraperitoneally with dexamethasone on d 1, 2, and 3 (0.5, 0.3, and 0.1 mu g/g) of life. Control pups (n = 10) received saline. At 4 wk the animals were anesthetized, and a pressure-conductance catheter was introduced into the left ventricle to measure pressure-volume loops. Cardiac function was measured and pressure-volume relations were determined to quantify intrinsic systolic and diastolic function. Subsequently, hearts were excised for histologic examination. Compared with saline-treated animals, dexamethasone-treated rats had a reduced ventricular weight (270 +/- 40 Versits 371 +/- 23 mg, p <0.001) and reduced systolic function (endsystolic elastance: 1.24 +/- 0.43 versus 2.50 +/- 1.39 min Hg/mu L, p = 0.028). Cardiac output was maintained and end-diastolic volume was increased (84 +/- 23 vervits 59 +/- 19 mu L p = 0.012) indicating it state of compensalory dilatation. Heart rate, diastolic function, and systemic vascular resistance were unchanged. Neonatal dexamethasone treatment causes cardiac alterations that can be detected in the prepubertal period and that may precede severe cardiac dysfunction later in life. If our findings are confirmed in humans. this may have consequences for a large patient population and cardiac screening at young age may be indicated to enable secondary prevention
    corecore