81 research outputs found
Immunosenescence and lymphomagenesis
One of the most important determinants of aging-related changes is a complex biological process emerged recently and called \u201cimmunosenescence\u201d. Immunosenescence refers to the inability of an aging immune system to produce an appropriate and effective response to challenge. This immune dysregulation may manifest as increased susceptibility to infection, cancer, autoimmune disease, and vaccine failure. At present, the relationship between immunosenescence and lymphoma in elderly patients is not defined in a satisfactory way. This review presents a brief overview of the interplay between aging, cancer and lymphoma, and the key topic of immunosenescence is addressed in the context of two main lymphoma groups, namely Non Hodgkin Lymphoma (NHL) and Hodgkin Lymphoma (HL). Epstein Barr Virus (EBV) plays a central role in the onset of neoplastic lymphoproliferation associated with immunological changes in aging, although the pathophysiology varies vastly among different disease entities. The interaction between immune dysfunction, immunosenescence and Epstein Barr Virus (EBV) infection appears to differ between NHL and HL, as well as between NHL subtypes
Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome
In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS
Euclid preparation: V. Predicted yield of redshift 7<z<9 quasars from the wide survey
We provide predictions of the yield of 7 < z < 9 quasars from the Euclid wide survey, updating the calculation presented in the
Euclid Red Book in several ways. We account for revisions to the Euclid near-infrared filter wavelengths; we adopt steeper rates
of decline of the quasar luminosity function (QLF; Φ) with redshift, Φ ∝ 10k(z−6)
, k = −0.72, and a further steeper rate of decline,
k = −0.92; we use better models of the contaminating populations (MLT dwarfs and compact early-type galaxies); and we make use
of an improved Bayesian selection method, compared to the colour cuts used for the Red Book calculation, allowing the identification
of fainter quasars, down to JAB ∼ 23. Quasars at z > 8 may be selected from Euclid OY JH photometry alone, but selection over
the redshift interval 7 < z < 8 is greatly improved by the addition of z-band data from, e.g., Pan-STARRS and LSST. We calculate
predicted quasar yields for the assumed values of the rate of decline of the QLF beyond z = 6. If the decline of the QLF accelerates
beyond z = 6, with k = −0.92, Euclid should nevertheless find over 100 quasars with 7.0 < z < 7.5, and ∼ 25 quasars beyond the
current record of z = 7.5, including ∼ 8 beyond z = 8.0. The first Euclid quasars at z > 7.5 should be found in the DR1 data release,
expected in 2024. It will be possible to determine the bright-end slope of the QLF, 7 < z < 8, M1450 < −25, using 8 m class telescopes
to confirm candidates, but follow-up with JWST or E-ELT will be required to measure the faint-end slope. Contamination of the
candidate lists is predicted to be modest even at JAB ∼ 23. The precision with which k can be determined over 7 < z < 8 depends on
the value of k, but assuming k = −0.72 it can be measured to a 1σ uncertainty of 0.07
Euclid preparation: V. Predicted yield of redshift 7 < z < 9 quasars from the wide survey
We provide predictions of the yield of 7 8 may be selected from Euclid OY JH photometry alone, but selection over the redshift interval 7 7.5 should be found in the DR1 data release, expected in 2024. It will be possible to determine the bright-end slope of the QLF, 7 < z < 8, M1450 < −25, using 8 m class telescopes to confirm candidates, but follow-up with JWST or E-ELT will be required to measure the faint-end slope. Contamination of the candidate lists is predicted to be modest even at JAB ∼ 23. The precision with which k can be determined over 7 < z < 8 depends on the value of k, but assuming k = −0.72 it can be measured to a 1σ uncertainty of 0.07
Euclid preparation: X. The Euclid photometric-redshift challenge
Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo-z) measurements for the success of
their main science objectives. However, to date, no method has been able to produce photo-zs at the required accuracy using only the broad-band
photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual
development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates
and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2−2.6 redshift range that the Euclid mission
will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was
divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample,
containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and
a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological
analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highlyaccurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers,
that is to say sources for which the photo-z deviates by more than 0.15(1 + z) from the spectroscopic-redshift (spec-z). We also show that, while
all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find
that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts,
for example z > 1. However they generally perform better than template-fitting methods at low redshift (z < 0.7), indicating that template-fitting
methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo-z precision and completeness
of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid).
Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning
results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select
between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority
Shedding Light on the Galaxy Luminosity Function
From as early as the 1930s, astronomers have tried to quantify the
statistical nature of the evolution and large-scale structure of galaxies by
studying their luminosity distribution as a function of redshift - known as the
galaxy luminosity function (LF). Accurately constructing the LF remains a
popular and yet tricky pursuit in modern observational cosmology where the
presence of observational selection effects due to e.g. detection thresholds in
apparent magnitude, colour, surface brightness or some combination thereof can
render any given galaxy survey incomplete and thus introduce bias into the LF.
Over the last seventy years there have been numerous sophisticated
statistical approaches devised to tackle these issues; all have advantages --
but not one is perfect. This review takes a broad historical look at the key
statistical tools that have been developed over this period, discussing their
relative merits and highlighting any significant extensions and modifications.
In addition, the more generalised methods that have emerged within the last few
years are examined. These methods propose a more rigorous statistical framework
within which to determine the LF compared to some of the more traditional
methods. I also look at how photometric redshift estimations are being
incorporated into the LF methodology as well as considering the construction of
bivariate LFs. Finally, I review the ongoing development of completeness
estimators which test some of the fundamental assumptions going into LF
estimators and can be powerful probes of any residual systematic effects
inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy &
Astrophysics Review. This version: bring in line with A&AR format
requirements, also minor typo corrections made, additional citations and
higher rez images adde
First near-relativistic solar electron events observed by EPD onboard Solar Orbiter
Context. Solar Orbiter, launched in February 2020, started its cruise phase in June 2020, in coincidence with its first perihelion at 0.51 au from the Sun. The in situ instruments onboard, including the Energetic Particle Detector (EPD), operate continuously during the cruise phase enabling the observation of solar energetic particles. Aims. In situ measurements of the first near-relativistic solar electron events observed in July 2020 by EPD are analyzed and the solar origins and the conditions for the interplanetary transport of these particles investigated. Methods. Electron observations from keV energies to the near-relativistic range were combined with the detection of type III radio bursts and extreme ultraviolet (EUV) observations from multiple spacecraft in order to identify the solar origin of the electron events. Electron anisotropies and timing as well as the plasma and magnetic field environment were evaluated to characterize the interplanetary transport conditions. Results. All electron events were clearly associated with type III radio bursts. EUV jets were also found in association with all of them except one. A diversity of time profiles and pitch-angle distributions was observed. Different source locations and different magnetic connectivity and transport conditions were likely involved. The July 11 event was also detected by Wind, separated 107 degrees in longitude from Solar Orbiter. For the July 22 event, the Suprathermal Electron and Proton sensor of EPD allowed for us to not only resolve multiple electron injections at low energies, but it also provided an exceptionally high pitch-angle resolution of a very anisotropic beam. This, together with radio observations of local Langmuir waves suggest a very good magnetic connection during the July 22 event. This scenario is challenged by a high-frequency occultation of the type III radio burst and a nominally non-direct connection to the source; therefore, magnetic connectivity requires further investigation.</p
Genetic redundancies enhance information transfer in noisy regulatory circuits
[EN] Cellular decision making is based on regulatory circuits that associate signal thresholds to specific physiological actions. This transmission of information is subjected to molecular noise what can decrease its fidelity. Here, we show instead how such intrinsic noise enhances information transfer in the presence of multiple circuit copies. The result is due to the contribution of noise to the generation of autonomous responses by each copy, which are altogether associated with a common decision. Moreover, factors that correlate the responses of the redundant units (extrinsic noise or regulatory cross-talk) contribute to reduce fidelity, while those that further uncouple them (heterogeneity within the copies) can lead to stronger information gain. Overall, our study emphasizes how the interplay of signal thresholding, redundancy, and noise influences the accuracy of cellular decision making. Understanding this interplay provides a basis to explain collective cell signaling mechanisms, and to engineer robust decisions with noisy genetic circuits.This work has been supported by BFU2015-66894-P (MINECO/FEDER) and GV/2016/079 (GVA) Grants. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Rodrigo Tarrega, G.; Poyatos, JF. (2016). Genetic redundancies enhance information transfer in noisy regulatory circuits. PLoS Computational Biology. 12(10). https://doi.org/10.1371/journal.pcbi.1005156S121
Molecular signatures for CCN1, p21 and p27 in progressive mantle cell lymphoma
Mantle cell lymphoma (MCL) is a comparatively rare non-Hodgkin’s lymphoma characterised by overexpression of cyclin D1.Many patients present with or progress to advanced stage disease within 3 years. MCL is considered an incurable disease withmedian survival between 3 and 4 years. We have investigated the role(s) of CCN1 (CYR61) and cell cycle regulators inprogressive MCL. We have used the human MCL cell lines REC1 G519 > JVM2 cells by RQ-PCR, depicting a decrease in CCN1expression with disease progression. Investigation of CCN1 isoform expression by western blotting showed that whilst expres-sion of full-length CCN1 was barely altered in the cell lines, expression of truncated forms (18–20 and 28–30 kDa) decreasedwith disease progression. We have then demonstrated that cyclin D1 and cyclin dependent kinase inhibitors (p21CIP1and p27KIP1)are also involved in disease progression. Cyclin D1 was highly expressed in REC1 cells (OD: 1.0), reduced to one fifth in G519cells (OD: 0.2) and not detected by western blotting in JVM2 cells. p27KIP1followed a similar profile of expression as cyclin D1.Conversely, p21CIP1was absent in the REC1 cells and showed increasing expression in G519 and JVM2 cells. Subcellularlocalization detected p21CIP1/p27KIP1primarily within the cytoplasm and absent from the nucleus, consistent with altered roles in treatment resistance. Dysregulation of the CCN1 truncated forms are associated with MCL progression. In conjunction withreduced expression of cyclin D1 and increased expression of p21, this molecular signature may depict aggressive disease andtreatment resistance
- …