8 research outputs found

    The effects of reminiscence on psychological well-being in older adults: a meta-analysis.

    Get PDF
    This paper presents the results of a meta-analysis to assess the effectiveness of reminiscence on psychological well-being across different target groups and treatment modalities. Fifteen controlled outcome studies were included. An overall effect size of 0.54 was found, indicating a moderate influence of reminiscence on life-satisfaction and emotional well-being in older adults. Life-review was found to have significantly greater effect on psychological well-being than simple reminiscence. In addition, reminiscence had significantly greater effect on community-dwelling adults than adults living in nursing homes or residential care. Other characteristics of participants or interventions were not found to moderate effects. It is concluded that reminiscence in general, but especially life review, are potentially effective methods for the enhancement of psychological well-being in older adults. However, a replication of effectiveness studies of the well-defined protocols is now warranted. © 2007 Taylor & Francis

    Interferometric Observations of Rapidly Rotating Stars

    Full text link
    Optical interferometry provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Through direct observation of rotationally distorted photospheres at sub-milliarcsecond scales, we are now able to characterize latitude dependencies of stellar radius, temperature structure, and even energy transport. These detailed new views of stars are leading to revised thinking in a broad array of associated topics, such as spectroscopy, stellar evolution, and exoplanet detection. As newly advanced techniques and instrumentation mature, this topic in astronomy is poised to greatly expand in depth and influence.Comment: Accepted for publication in A&AR

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams

    Towards the generalized iterative synthesis of small molecules

    No full text

    Toward a Psychobiology of Transcendence: God in the Brain

    No full text

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    No full text
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
    corecore