1,378 research outputs found
Mesenchymal stem cell-based therapy for ischemic stroke
Ischemic stroke represents a major, worldwide health burden with increasing incidence. Patients affected by ischemic strokes currently have few clinically approved treatment options available. Most currently approved treatments for ischemic stroke have narrow therapeutic windows, severely limiting the number of patients able to be treated. Mesenchymal stem cells represent a promising novel treatment for ischemic stroke. Numerous studies have demonstrated that mesenchymal stem cells functionally improve outcomes in rodent models of ischemic stroke. Recent studies have also shown that exosomes secreted by mesenchymal stem cells mediate much of this effect. In the present review, we summarize the current literature on the use of mesenchymal stem cells to treat ischemic stroke. Further studies investigating the mechanisms underlying mesenchymal stem cells tissue healing effects are warranted and would be of benefit to the field
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals
Quantum simulation with cold atoms in optical lattices is an attractive avenue for explorations of quantum many-body physics. A principal challenge in the field is to increase the energy and length scales in current set-ups, thereby reducing temperature and coherence-time requirements. Here, we present a new paradigm for high-density, two-dimensional optical lattices in photonic crystal waveguides. Specially engineered two-dimensional photonic crystals provide a practical platform to trap atoms and engineer their interactions in ways that surpass the limitations of current technologies and enable investigations of novel quantum many-body matter. Our schemes remove the constraint on the lattice constant set by the free-space optical wavelength in favour of deeply sub-wavelength atomic arrays. We further describe possibilities for atom–atom interactions mediated by photons in two-dimensional photonic crystal waveguides with energy scales several orders of magnitude larger than for exchange interactions in free-space lattices and with the capability to engineer strongly long-range interactions
Recommended from our members
The resilience of postglacial hunter-gatherers to abrupt climate change
Understanding the resilience of early societies to climate change is an essential part of exploring the environmental sensitivity of human populations. There is significant interest in the role of abrupt climate events as a driver of early Holocene human activity, but there are very few well-dated records directly compared with local climate archives. Here, we present evidence from the internationally important Mesolithic site of Star Carr showing occupation during the early Holocene, which is directly compared with a high-resolution palaeoclimate record from neighbouring lake beds. We show that-once established-there was intensive human activity at the site for several hundred years when the community was subject to multiple, severe, abrupt climate events that impacted air temperatures, the landscape and the ecosystem of the region. However, these results show that occupation and activity at the site persisted regardless of the environmental stresses experienced by this society. The Star Carr population displayed a high level of resilience to climate change, suggesting that postglacial populations were not necessarily held hostage to the flickering switch of climate change. Instead, we show that local, intrinsic changes in the wetland environment were more significant in determining human activity than the large-scale abrupt early Holocene climate events
The thalamic mGluR1-PLC??4 pathway is critical in sleep architecture
The transition from wakefulness to a nonrapid eye movement (NREM) sleep state at the onset of sleep involves a transition from low-voltage, high-frequency irregular electroencephalography (EEG) waveforms to large-amplitude, low-frequency EEG waveforms accompanying synchronized oscillatory activity in the thalamocortical circuit. The thalamocortical circuit consists of reciprocal connections between the thalamus and cortex. The cortex sends strong excitatory feedback to the thalamus, however the function of which is unclear. In this study, we investigated the role of the thalamic metabotropic glutamate receptor 1 (mGluR1)-phospholipase C ??4 (PLC??4) pathway in sleep control in PLC??4-deficient (PLC??4-/-) mice. The thalamic mGluR1-PLC??4 pathway contains synapses that receive corticothalamic inputs. In PLC??4-/- mice, the transition from wakefulness to the NREM sleep state was stimulated, and the NREM sleep state was stabilized, which resulted in increased NREM sleep. The power density of delta (??) waves increased in parallel with the increased NREM sleep. These sleep phenotypes in PLC??4-/- mice were consistent in TC-restricted PLC??4 knockdown mice. Moreover, in vitro intrathalamic oscillations were greatly enhanced in the PLC??4-/- slices. The results of our study showed that thalamic mGluR1-PLC??4 pathway was critical in controlling sleep architecture.ope
Fine Tuning of Ca(V)1.3 Ca2+ Channel Properties in Adult Inner Hair Cells Positioned in the Most Sensitive Region of the Gerbil Cochlea
Hearing relies on faithful signal transmission by cochlear inner hair cells (IHCs) onto auditory fibres over a wide frequency
and intensity range. Exocytosis at IHC ribbon synapses is triggered by Ca2+
inflow through CaV1.3 (L-type) Ca2+
channels. We
investigated the macroscopic (whole-cell) and elementary (cell-attached) properties of Ca2+
currents in IHCs positioned at
the middle turn (frequency ,2 kHz) of the adult gerbil cochlea, which is their most sensitive hearing region. Using near
physiological recordings conditions (body temperature and a Na+
based extracellular solution), we found that the
macroscopic Ca2+
current activates and deactivates very rapidly (time constant below 1 ms) and inactivates slowly and only
partially. Single-channel recordings showed an elementary conductance of 15 pS, a sub-ms latency to first opening, and a
very low steady-state open probability (Po: 0.024 in response to 500-ms depolarizing steps at ,218 mV). The value of Po
was significantly larger (0.06) in the first 40 ms of membrane depolarization, which corresponds to the time when most Ca2+
channel openings occurred clustered in bursts (mean burst duration: 19 ms). Both the Po and the mean burst duration were
smaller than those previously reported in high-frequency basal IHCs. Finally, we found that middle turn IHCs are likely to
express about 4 times more Ca2+
channels per ribbon than basal cells. We propose that middle-turn IHCs finely-tune CaV1.3
Ca2+
channel gating in order to provide reliable information upon timing and intensity of lower-frequency sounds
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Lipids modulate the conformational dynamics of a secondary multidrug transporter
Direct interactions with lipids have emerged as key determinants of the folding, structure and function of membrane proteins, but an understanding of how lipids modulate protein dynamics is still lacking. Here, we systematically explored the effects of lipids on the conformational dynamics of the proton-powered multidrug transporter LmrP from Lactococcus lactis, using the pattern of distances between spin-label pairs previously shown to report on alternating access of the protein. We uncovered, at the molecular level, how the lipid headgroups shape the conformational-energy landscape of the transporter. The model emerging from our data suggests a direct interaction between lipid headgroups and a conserved motif of charged residues that control the conformational equilibrium through an interplay of electrostatic interactions within the protein. Together, our data lay the foundation for a comprehensive model of secondary multidrug transport in lipid bilayers
AKAP95 regulates splicing through scaffolding RNAs and RNA processing factors
YesAlternative splicing of pre-mRNAs significantly contributes to the complexity of gene
expression in higher organisms, but the regulation of the splice site selection remains
incompletely understood. We have previously demonstrated that a chromatin-associated
protein, AKAP95 (AKAP8), has a remarkable activity in enhancing chromatin transcription.
In this study, we have shown that AKAP95 physically interacts with many factors involved in
transcription and RNA processing, and functionally regulates pre-mRNA splicing. AKAP95
directly promotes splicing in vitro and the inclusion of a specific exon of an endogenous gene
FAM126A. The N-terminal YG-rich domain of AKAP95 is important for its binding to RNA
processing factors including selective groups of hnRNP proteins, and its zinc finger domains
are critical for pre-mRNA binding. Genome-wide binding assays revealed that AKAP95 bound
preferentially to proximal intronic regions on a large number of pre-mRNAs in human
transcriptome, and AKAP95 depletion predominantly resulted in reduced inclusion of many
exons. AKAP95 also selectively coordinates with hnRNP H/F and U proteins in regulating
alternative splicing events. We have further shown that AKAP95 directly interacts with itself.
Taken together, our results establish AKAP95 as a novel and mostly positive regulator of premRNA
splicing and a possible integrator of transcription and splicing regulation, and support
a model that AKAP95 facilitates the splice site communication by looping out introns through
both RNA-binding and protein-protein interaction.This work was supported by a UAB start-up fund to H.J
- …
