1,962 research outputs found

    Power grip, pinch grip, manual muscle testing or thenar atrophy - which should be assessed as a motor outcome after carpal tunnel decompression? A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Objective assessment of motor function is frequently used to evaluate outcome after surgical treatment of carpal tunnel syndrome (CTS). However a range of outcome measures are used and there appears to be no consensus on which measure of motor function effectively captures change. The purpose of this systematic review was to identify the methods used to assess motor function in randomized controlled trials of surgical interventions for CTS. A secondary aim was to evaluate which instruments reflect clinical change and are psychometrically robust.</p> <p>Methods</p> <p>The bibliographic databases Medline, AMED and CINAHL were searched for randomized controlled trials of surgical interventions for CTS. Data on instruments used, methods of assessment and results of tests of motor function was extracted by two independent reviewers.</p> <p>Results</p> <p>Twenty-two studies were retrieved which included performance based assessments of motor function. Nineteen studies assessed power grip dynamometry, fourteen studies used both power and pinch grip dynamometry, eight used manual muscle testing and five assessed the presence or absence of thenar atrophy. Several studies used multiple tests of motor function. Two studies included both power and pinch strength and reported descriptive statistics enabling calculation of effect sizes to compare the relative responsiveness of grip and pinch strength within study samples. The study findings suggest that tip pinch is more responsive than lateral pinch or power grip up to 12 weeks following surgery for CTS.</p> <p>Conclusion</p> <p>Although used most frequently and known to be reliable, power and key pinch dynamometry are not the most valid or responsive tools for assessing motor outcome up to 12 weeks following surgery for CTS. Tip pinch dynamometry more specifically targets the thenar musculature and appears to be more responsive. Manual muscle testing, which in theory is most specific to the thenar musculature, may be more sensitive if assessed using a hand held dynamometer – the Rotterdam Intrinsic Handheld Myometer. However further research is needed to evaluate its reliability and responsiveness and establish the most efficient and psychometrically robust method of evaluating motor function following surgery for CTS.</p

    Overview of (pro-)Lie group structures on Hopf algebra character groups

    Full text link
    Character groups of Hopf algebras appear in a variety of mathematical and physical contexts. To name just a few, they arise in non-commutative geometry, renormalisation of quantum field theory, and numerical analysis. In the present article we review recent results on the structure of character groups of Hopf algebras as infinite-dimensional (pro-)Lie groups. It turns out that under mild assumptions on the Hopf algebra or the target algebra the character groups possess strong structural properties. Moreover, these properties are of interest in applications of these groups outside of Lie theory. We emphasise this point in the context of two main examples: The Butcher group from numerical analysis and character groups which arise from the Connes--Kreimer theory of renormalisation of quantum field theories.Comment: 31 pages, precursor and companion to arXiv:1704.01099, Workshop on "New Developments in Discrete Mechanics, Geometric Integration and Lie-Butcher Series", May 25-28, 2015, ICMAT, Madrid, Spai

    The fidelity of dynamic signaling by noisy biomolecular networks

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.We acknowledge support from a Medical Research Council and Engineering and Physical Sciences Council funded Fellowship in Biomedical Informatics (CGB) and a Scottish Universities Life Sciences Alliance chair in Systems Biology (PSS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Investigation of Relationships between Urinary Biomarkers of Phytoestrogens, Phthalates, and Phenols and Pubertal Stages in Girls

    Get PDF
    BackgroundHormonally active environmental agents may alter the course of pubertal development in girls, which is controlled by steroids and gonadotropins.ObjectivesWe investigated associations of concurrent exposures from three chemical classes (phenols, phthalates, and phytoestrogens) with pubertal stages in a multiethnic longitudinal study of 1,151 girls from New York City, New York, greater Cincinnati, Ohio, and northern California who were 6-8 years of age at enrollment (2004-2007).MethodsWe measured urinary exposure biomarkers at visit 1 and examined associations with breast and pubic hair development (present or absent, assessed 1 year later) using multivariate adjusted prevalence ratios (PR) and 95% confidence intervals (CIs). Modification of biomarker associations by age-specific body mass index percentile (BMI%) was investigated, because adipose tissue is a source of peripubertal hormones.ResultsBreast development was present in 30% of girls, and 22% had pubic hair. High-molecular-weight phthalate (high MWP) metabolites were weakly associated with pubic hair development [adjusted PR, 0.94 (95% CI, 0.88-1.00), fifth vs. first quintile]. Small inverse associations were seen for daidzein with breast stage and for triclosan and high MWP with pubic hair stage; a positive trend was observed for low-molecular-weight phthalate biomarkers with breast and pubic hair development. Enterolactone attenuated BMI associations with breast development. In the first enterolactone quintile, for the association of high BMI with any development, the PR was 1.34 (95% CI, 1.23-1.45 vs. low BMI). There was no BMI association in the fifth, highest quintile of enterolactone.ConclusionsWeak hormonally active xenobiotic agents investigated in this study had small associations with pubertal development, mainly among those agents detected at highest concentrations

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table

    Probing the SELEX Process with Next-Generation Sequencing

    Get PDF
    Background SELEX is an iterative process in which highly diverse synthetic nucleic acid libraries are selected over many rounds to finally identify aptamers with desired properties. However, little is understood as how binders are enriched during the selection course. Next-generation sequencing offers the opportunity to open the black box and observe a large part of the population dynamics during the selection process. Methodology We have performed a semi-automated SELEX procedure on the model target streptavidin starting with a synthetic DNA oligonucleotide library and compared results obtained by the conventional analysis via cloning and Sanger sequencing with next-generation sequencing. In order to follow the population dynamics during the selection, pools from all selection rounds were barcoded and sequenced in parallel. Conclusions High affinity aptamers can be readily identified simply by copy number enrichment in the first selection rounds. Based on our results, we suggest a new selection scheme that avoids a high number of iterative selection rounds while reducing time, PCR bias, and artifacts

    Association of Common Polymorphisms in GLUT9 Gene with Gout but Not with Coronary Artery Disease in a Large Case-Control Study

    Get PDF
    BACKGROUND: Serum uric acid (UA) levels have recently been shown to be genetically influenced by common polymorphisms in the GLUT9 gene in two genome-wide association analyses of Italian and British populations. Elevated serum UA levels are often found in conjunction with the metabolic syndrome. Hyperuricemia is the major risk factor for gout and has been associated with increased cardiovascular morbidity and mortality. The aim of the present study was to further elucidate the association of polymorphisms in GLUT9 with gout and coronary artery disease (CAD) or myocardial infarction (MI). To test our hypotheses, we performed two large case-control association analyses of individuals from the German MI Family Study. METHODS AND FINDINGS: First, 665 patients with gout and 665 healthy controls, which were carefully matched for age and gender, were genotyped for four single nucleotide polymorphisms (SNPs) within or near the GLUT9 gene. All four SNPs demonstrated highly significant association with gout. SNP rs6855911, located within intron 7 of GLUT9, showed the strongest signal with a protective effect of the minor allele with an allelic odds ratio of 0.62 (95% confidence interval 0.52-0.75; p = 3.2*10(-7)). Importantly, this finding was not influenced by adjustment for components of the metabolic syndrome or intake of diuretics. Secondly, 1,473 cases with severe CAD or MI and 1,241 healthy controls were tested for the same four GLUT9 SNPs. The analyses revealed, however, no significant association with CAD or with MI. Additional screening of genome-wide association data sets showed no signal for CAD or MI within the GLUT9 gene region. CONCLUSION: Thus, our results provide compelling evidence that common genetic variations within the GLUT9 gene strongly influence the risk for gout but are unlikely to have a major effect on CAD or MI in a German population

    Measurement of B(t->Wb)/B(t->Wq) at the Collider Detector at Fermilab

    Get PDF
    We present a measurement of the ratio of top-quark branching fractions R= B(t -> Wb)/B(t -> Wq), where q can be a b, s or a d quark, using lepton-plus-jets and dilepton data sets with integrated luminosity of ~162 pb^{-1} collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of t-tbar events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.Comment: 7 pages, 2 figures, published in Physical Review Letters; changes made to be consistent with published versio
    corecore