74 research outputs found
Optimisation multidisciplinaire sous incertitude en phase conceptuelle avion
Ces travaux de recherche concernent l'optimisation multidisciplinaire déployée lors de la conception de systèmes complexes. Ils sont tout particulièrement centrés sur la conception avion. À ce stade de la conception les incertitudes engendrées sont significatives. De nouvelles méthodes efficaces de modélisation et de propagation des incertitudes sont donc proposées afin de concevoir un système fiable et robuste. Elles font appel à des techniques de modélisation adaptatives, à des algorithmes d'optimisation classiques et à des techniques basées sur l'intelligence artificielle (systèmes multi-agent).These researches concern multidisciplinary optimization deployed in the design of complex systems. They are particularly focused on aircraft design. At this stage of the design, the uncertainties are significant. Effective new methods of modeling and uncertainty propagation are proposed to develop a reliable and robust system. They use techniques of adaptive modeling, optimization algorithms and classical techniques based on artificial intelligence (multi-agent systems)
Uncertainty propagation in multi-agent systems for multidisciplinary optimization problems
International audienceBecause of uncertainties on models and variables, deterministic multidisciplinary optimization may achieve under-sizing (without design margins) or over-sizing (with arbitrary design margins). Thus, it is necessary to implement multidisciplinary optimization methods that take into account the uncertainties in order to design systems that are both robust and reliable. Probabilistic methods such as reliability-based design optimization (RBDO) or robust design methods, provide designers with powerful decision-making tools but may involve very time-consuming calculations. New optimization approaches have been developed to deal with such complex problems. Auto-adaptive Multi-Agent Systems (AMAS) is a new approach developed recently, allowing to take into account the various aspects of a multidisciplinary optimization problem (multi-level, computation burden etc.). This approach was suggested for solving complex deterministic optimization problem. Now, the question of the integration of uncertainties in this multi-agent based optimization arises. The aim of this paper is to propose a new methodology for integrating the treatment of uncertainties in an adaptive multi-agent system for sequential optimization. The developed method employs a single loop process in which cycles of deterministic optimization alternate with evaluations of the system reliability. For each cycle, the optimization and the reliability analysis are decoupled from each other. The reliability analysis is carried out at agent level and only after the resolution of the deterministic optimization, to verify the feasibility of the constraints under uncertainties. Following the probabilistic study, the constraints violated (with low reliability) are shifted to the area of feasibility by integrating adaptive safety coeficients whose calculations are based on the agent-level reliability information. The method developed is applied to a conceptual aircraft design problem
Optimisation multidisciplinaire sous incertitudes en conception préliminaire avion
Les incertitudes sont couramment intégrées dans les méthodes d'optimisation afin d'obtenir des systèmes fiables et/ou robustes. Les systèmes à optimiser de plus en plus complexes font souvent intervenir plusieurs disciplines étroitement couplées : des méthodes spécifiques permettant de propager les incertitudes doivent donc être implémentées. Nous nous intéresserons notamment au problème de conception préliminaire avion dont l'objectif est de minimiser la masse en respectant des contraintes de robustesse et de fiabilité
Multi-objective reinforcement learning for responsive grids
The original publication is available at www.springerlink.comInternational audienceGrids organize resource sharing, a fundamental requirement of large scientific collaborations. Seamless integration of grids into everyday use requires responsiveness, which can be provided by elastic Clouds, in the Infrastructure as a Service (IaaS) paradigm. This paper proposes a model-free resource provisioning strategy supporting both requirements. Provisioning is modeled as a continuous action-state space, multi-objective reinforcement learning (RL) problem, under realistic hypotheses; simple utility functions capture the high level goals of users, administrators, and shareholders. The model-free approach falls under the general program of autonomic computing, where the incremental learning of the value function associated with the RL model provides the so-called feedback loop. The RL model includes an approximation of the value function through an Echo State Network. Experimental validation on a real data-set from the EGEE grid shows that introducing a moderate level of elasticity is critical to ensure a high level of user satisfaction
Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)
International audienceBACKGROUND: Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. METHODOLOGY/PRINCIPAL FINDINGS: Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. CONCLUSIONS/SIGNIFICANCE: Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the mechanisms of communication via the diffusible molecules. Our results designate autoinducer-1 lactones as the main targets for a global biocontrol of soft-rot bacteria communications, including those of emerging isolates
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Modelling human choices: MADeM and decision‑making
Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
Measurement of the J/ψ pair production cross-section in pp collisions at TeV
The production cross-section of J/ψ pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of TeV, corresponding to an integrated luminosity of 279 ±11 pb. The measurement is performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψ pair are measured and compared to theoretical predictions.The production cross-section of pairs is measured using a data sample of collisions collected by the LHCb experiment at a centre-of-mass energy of , corresponding to an integrated luminosity of . The measurement is performed for mesons with a transverse momentum of less than in the rapidity range . The production cross-section is measured to be . The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the pair are measured and compared to theoretical predictions
Measurement of forward production in collisions at TeV
A measurement of the cross-section for production in collisions is presented using data corresponding to an integrated luminosity of fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive production cross-sections, where the decays to , are measured to be \begin{align*} \begin{split} \sigma_{W^{+} \to e^{+}\nu_{e}}&=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb},\\ \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}&=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{split} \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of boson branching fractions is determined to be \begin{align*} \begin{split} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{split} \end{align*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for production in collisions is presented using data corresponding to an integrated luminosity of fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive production cross-sections, where the decays to , are measured to be \begin{equation*} \sigma_{W^{+} \to e^{+}\nu_{e}}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb}, \end{equation*} \begin{equation*} \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{equation*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of boson branching fractions is determined to be \begin{equation*} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{equation*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for W → eν production in pp collisions is presented using data corresponding to an integrated luminosity of 2 fb collected by the LHCb experiment at a centre-of-mass energy of TeV. The electrons are required to have more than 20 GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive W production cross-sections, where the W decays to eν, are measured to be where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination
- …