449 research outputs found

    Networks of Emotion Concepts

    Get PDF
    The aim of this work was to study the similarity network and hierarchical clustering of Finnish emotion concepts. Native speakers of Finnish evaluated similarity between the 50 most frequently used Finnish words describing emotional experiences. We hypothesized that methods developed within network theory, such as identifying clusters and specific local network structures, can reveal structures that would be difficult to discover using traditional methods such as multidimensional scaling (MDS) and ordinary cluster analysis. The concepts divided into three main clusters, which can be described as negative, positive, and surprise. Negative and positive clusters divided further into meaningful sub-clusters, corresponding to those found in previous studies. Importantly, this method allowed the same concept to be a member in more than one cluster. Our results suggest that studying particular network structures that do not fit into a low-dimensional description can shed additional light on why subjects evaluate certain concepts as similar. To encourage the use of network methods in analyzing similarity data, we provide the analysis software for free use (http://www.becs.tkk.fi/similaritynets/)

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    What is the Role of Community Capabilities for Maternal Health? An Exploration of Community Capabilities as Determinants to Institutional Deliveries in Bangladesh, India, and Uganda

    Get PDF
    Background: While community capabilities are recognized as important factors in developing resilient health systems and communities, appropriate metrics for these have not yet been developed. Furthermore, the role of community capabilities on access to maternal health services has been underexplored. In this paper, we summarize the development of a community capability score based on the Future Health System (FHS) project’s experience in Bangladesh, India, and Uganda, and, examine the role of community capabilities as determinants of institutional delivery in these three contexts. Methods: We developed a community capability score using a pooled dataset containing cross-sectional household survey data from Bangladesh, India, and Uganda. Our main outcome of interest was whether the woman delivered in an institution. Our predictor variables included the community capability score, as well as a series of previously identified determinants of maternal health. We calculate both population-averaged effects (using GEE logistic regression), as well as sub-national level effects (using a mixed effects model). Results: Our final sample for analysis included 2775 women, of which 1238 were from Bangladesh, 1199 from India, and 338 from Uganda. We found that individual-level determinants of institutional deliveries, such as maternal education, parity, and ante-natal care access were significant in our analysis and had a strong impact on a woman’s odds of delivering in an institution. We also found that, in addition to individual-level determinants, greater community capability was significantly associated with higher odds of institutional delivery. For every additional capability, the odds of institutional delivery would increase by up to almost 6 %. Conclusion: Individual-level characteristics are strong determinants of whether a woman delivered in an institution. However, we found that community capability also plays an important role, and should be taken into account when designing programs and interventions to support institutional deliveries. Consideration of individual factors and the capabilities of the communities in which people live would contribute to the vision of supporting people-centered approaches to health

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Resolving the paradox of shame: differentiating among specific appraisal-feeling combinations explains pro-social and self-defensive motivation

    Get PDF
    Research has shown that people can respond both self-defensively and pro-socially when they experience shame. We address this paradox by differentiating among specific appraisals (of specific self-defect and concern for condemnation) and feelings (of shame, inferiority, and rejection) often reported as part of shame. In two Experiments (Study 1: N = 85; Study 2: N = 112), manipulations that put participants’ social-image at risk increased their appraisal of concern for condemnation. In Study 2, a manipulation of moral failure increased participants’ appraisal that they suffered a specific self-defect. In both studies, mediation analyses showed that effects of the social-image at risk manipulation on self-defensive motivation were explained by appraisal of concern for condemnation and felt rejection. In contrast, the effect of the moral failure manipulation on pro-social motivation in Study 2 was explained by appraisal of a specific self-defect and felt shame. Thus, distinguishing among the appraisals and feelings tied to shame enabled clearer prediction of pro-social and self-defensive responses to moral failure with and without risk to social-image

    Social-ecological outcomes of agricultural intensification

    Get PDF
    Land-use intensification in agrarian landscapes is seen as a key strategy to simultaneously feed humanity and use ecosystems sustainably, but the conditions that support positive social-ecological outcomes remain poorly documented. We address this knowledge gap by synthesizing research that analyses how agricultural intensification affects both ecosystem services and human well-being in low- and middle-income countries. Overall, we find that agricultural intensification is rarely found to lead to simultaneous positive ecosystem service and well-being outcomes. This is particularly the case when ecosystem services other than food provisioning are taken into consideration
    • 

    corecore