375 research outputs found

    Vortex dissipation and level dynamics for the layered superconductors with impurities

    Full text link
    We study parametric level statistics of the discretized excitation spectra inside a moving vortex core in layered superconductors with impurities. The universal conductivity is evaluated numerically for the various values of rescaled vortex velocities Îș\kappa from the clean case to the dirty limit case. The random matrix theoretical prediction is verified numerically in the large Îș\kappa regime. On the contrary in the low velocity regime, we observe σxx∝Îș2/3\sigma_{xx} \propto \kappa^{2/3} which is consistent with the theoretical result for the super-clean case, where the energy dissipation is due to the Landau-Zener transition which takes place at the points called ``avoided crossing''.Comment: 10 pages, 4 figures, REVTeX3.

    Universality of Parametric Spectral Correlations: Local versus Extended Perturbing Potentials

    Full text link
    We explore the influence of an arbitrary external potential perturbation V on the spectral properties of a weakly disordered conductor. In the framework of a statistical field theory of a nonlinear sigma-model type we find, depending on the range and the profile of the external perturbation, two qualitatively different universal regimes of parametric spectral statistics (i.e. cross-correlations between the spectra of Hamiltonians H and H+V). We identify the translational invariance of the correlations in the space of Hamiltonians as the key indicator of universality, and find the connection between the coordinate system in this space which makes the translational invariance manifest, and the physically measurable properties of the system. In particular, in the case of localized perturbations, the latter turn out to be the eigenphases of the scattering matrix for scattering off the perturbing potential V. They also have a purely statistical interpretation in terms of the moments of the level velocity distribution. Finally, on the basis of this analysis, a set of results obtained recently by the authors using random matrix theory methods is shown to be applicable to a much wider class of disordered and chaotic structures.Comment: 16 pages, 7 eps figures (minor changes and reference [17] added

    Intersubband spin-density excitations in quantum wells with Rashba spin splitting

    Full text link
    In inversion-asymmetric semiconductors, spin-orbit coupling induces a k-dependent spin splitting of valence and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Manipulating nonequilibrium spin coherence in device applications thus requires understanding how valence and conduction band spin splitting affects carrier spin dynamics. This paper studies the relevance of this decoherence mechanism for collective intersubband spin-density excitations (SDEs) in quantum wells. A density-functional formalism for the linear spin-density matrix response is presented that describes SDEs in the conduction band of quantum wells with subbands that may be non-parabolic and spin-split due to bulk or structural inversion asymmetry (Rashba effect). As an example, we consider a 40 nm GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction subbands. We find a coupling and wavevector-dependent splitting of the longitudinal and transverse SDEs. However, decoherence of the SDEs is not determined by subband spin splitting, due to collective effects arising from dynamical exchange and correlation.Comment: 10 pages, 4 figure

    Neutrinoless double-beta decay with three or four neutrino mixing

    Full text link
    Considering the scheme with mixing of three neutrinos and a mass hierarchy that can accommodate the results of solar and atmospheric neutrino experiments, it is shown that the results of solar neutrino experiments imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay, under the natural assumptions that massive neutrinos are Majorana particles and there are no unlikely fine-tuned cancellations among the contributions of the different neutrino masses. Considering the four-neutrino schemes that can accommodate also the results of the LSND experiment, it is shown that only one of them is compatible with the results of neutrinoless double-beta decay experiments and with the measurement of the abundances of primordial elements produced in Big-Bang Nucleosynthesis. It is shown that in this scheme, under the assumptions that massive neutrinos are Majorana particles and there are no cancellations among the contributions of the different neutrino masses, the results of the LSND experiment imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay.Comment: 18 pages including 2 figures, RevTe

    Sideward flow of K+ mesons in Ru+Ru and Ni+Ni reactions near threshold

    Full text link
    Experimental data on K+ meson and proton sideward flow measured with the FOPI detector at SIS/GSI in the reactions Ru+Ru at 1.69 AGeV and Ni+Ni at 1.93 AGeV are presented. The K+ sideward flow is found to be anti-correlated (correlated) with the one of protons at low (high) transverse momenta. When compared to the predictions of a transport model, the data favour the existence of an in-medium repulsive K+ nucleon potential.Comment: 16 pages Revtex, 3 ps-figures, submitted to Phys. Lett.

    Libxc: a library of exchange and correlation functionals for density functional theory

    Full text link
    The central quantity of density functional theory is the so-called exchange-correlation functional. This quantity encompasses all non-trivial many-body effects of the ground-state and has to be approximated in any practical application of the theory. For the past 50 years, hundreds of such approximations have appeared, with many successfully persisting in the electronic structure community and literature. Here, we present a library that contains routines to evaluate many of these functionals (around 180) and their derivatives.Comment: 15 page

    Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter

    Get PDF
    The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere
    • 

    corecore