55 research outputs found

    Imaging Spectrometers Using Concave Holographic Gratings

    Get PDF
    Imaging spectroscopy combines the spatial attributes of imaging with the compositionally diagnostic attributes of spectroscopy. For spacebased remote sensing applications, mass, size, power, data rate, and application constrain the scanning approach. For the first three approaches, substantial savings in mass and size of the spectrometer can be achieved in some cases with a concave holographic grating and careful placement of an order-sorting filter. A hologram etched on the single concave surface contains the equivalent of the collimating, dispersing, and camera optics of a conventional grating spectrometer and provides substantial wavelength dependent corrections for spherical aberrations and a flat focal field. These gratings can be blazed to improve efficiency when used over a small wavelength range or left unblazed for broadband uniform efficiency when used over a wavelength range of up to 2 orders. More than 1 order can be imaged along the dispersion axis by placing an appropriately designed step order-sorting filter in front of the one- or two-dimensional detector. This filter can be shaped for additional aberration corrections. The VIRIS imaging spectrometer based on the broadband design provides simultaneous imaging of the entrance slit from lambda = 0.9 to 2.6 microns (1.5 orders) onto a 128 x 128 HgCdTe detector (at 77 K). The VIRIS spectrometer was used for lunar mapping with the UH 24.in telescope at Mauna Kea Observatory. The design is adaptable for small, low mass, space based imaging spectrometers

    Infrared observations of faint comets

    Get PDF
    Infrared observations of the periodic comets Encke, Stephan-Oterma and Chernykh indicate that the dusty component in this class of comets is not radically different from the dusty component found in nonperiodic comets. The differences in the infrared behavior among these three comets suggest that a range of behaviors rather than a single behavior typifies the cometary activity. The range in albedo (0.02 to 0.10) of the dust calculated for the periodic comets is similar to the range in albedos seen among the asteroids

    Asteroid amphitrite: Surface composition and prospects for the possible Galileo flyby

    Get PDF
    Studies of the trajectory of the Galileo mission to Jupiter recently revealed that the spacecraft can pass close to one of the largest asteroids (#29 Amphitrite). NASA has therefore altered the mission plan of the Galileo spacecraft to include a possible close flyby of Amphitrite in early December 1986, if the condition of the spacecraft allows. If this option is actually implemented, Amphitrite will become the only asteroid for which any high-spatial resolution images and reflection spectra will be available. To evaluate the value of this data and place Amphitrite in the context of the more than 600 asteroids for which some compositional information exists. Existing data was reexamined, new telescopic spectra of Amphitrite were obtained, and simulated Galileo data sets were constructed

    WISE/NEOWISE Observations of the Jovian Trojans: Preliminary Results

    Get PDF
    We present the preliminary analysis of over 1739 known and 349 candidate Jovian Trojans observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). With this survey the available diameters, albedos and beaming parameters for the Jovian Trojans have been increased by more than an order of magnitude compared to previous surveys. We find that the Jovian Trojan population is very homogenous for sizes larger than 10\sim10km (close to the detection limit of WISE for these objects). The observed sample consists almost exclusively of low albedo objects, having a mean albedo value of 0.07±0.030.07\pm0.03. The beaming parameter was also derived for a large fraction of the observed sample, and it is also very homogenous with an observed mean value of 0.88±0.130.88\pm0.13. Preliminary debiasing of the survey shows our observed sample is consistent with the leading cloud containing more objects than the trailing cloud. We estimate the fraction to be N(leading)/N(trailing) 1.4±0.2\sim 1.4 \pm 0.2, lower than the 1.6±0.11.6 \pm 0.1 value derived by others.Comment: Accepted for publication in Astrophysical Journal. Electronic table will be available at the publishers websit

    Partitioning of Minimotifs Based on Function with Improved Prediction Accuracy

    Get PDF
    Background: Minimotifs are short contiguous peptide sequences in proteins that are known to have a function in at least one other protein. One of the principal limitations in minimotif prediction is that false positives limit the usefulness of this approach. As a step toward resolving this problem we have built, implemented, and tested a new data-driven algorithm that reduces false-positive predictions. Methodology/Principal Findings: Certain domains and minimotifs are known to be strongly associated with a known cellular process or molecular function. Therefore, we hypothesized that by restricting minimotif predictions to those where the minimotif containing protein and target protein have a related cellular or molecular function, the prediction is more likely to be accurate. This filter was implemented in Minimotif Miner using function annotations from the Gene Ontology. We have also combined two filters that are based on entirely different principles and this combined filter has a better predictability than the individual components. Conclusions/Significance: Testing these functional filters on known and random minimotifs has revealed that they are capable of separating true motifs from false positives. In particular, for the cellular function filter, the percentage of known minimotifs that are not removed by the filter is,4.6 times that of random minimotifs. For the molecular function filter this ratio is,2.9. These results, together with the comparison with the published frequency score filter, strongly suggest tha

    Photophoresis as a source of hot minerals in comets

    Get PDF
    A time-dependent model of the solar nebula is used to describe the outward transport of hot mineral aggregates from locations in the warm inner regions of the nebula under the influence of photophoresis. We show that there is a direct dependence between the size of the gap initially assumed to exist in the inner solar nebula and the heliocentric distance to which the aggregates are likely to drift. We demonstrate that, despite a significant contribution to the opacity of the disk resulting from Rayleigh scattering by hydrogen, photophoresis can be considered as a transport mechanism leading to the presence of hot minerals in comets. This mechanism can lead to an influx of hot minerals in the formation regions of the main cometary reservoirs, implying a potential "dust-loading" of bodies from these populations. This scenario is compatible with the detection of crystalline silicates in a growing number of comets and also with the recent identification of CAIs in the samples returned from Comet 81P/Wild 2 by the Stardust mission. Finally, we find that this mechanism is consistent with the compositional diversity observed in small bodies of the outer solar system, in contrast to other proposed processes which invoke an efficient turbulent mixing within the primordial nebula

    On the dynamics of planetesimals embedded in turbulent protoplanetary discs with dead zones

    Get PDF
    (abridged) Accretion in protoplanetary discs is thought to be driven by [...] turbulence via the magnetorotational instability (MRI). Recent work has shown that a planetesimal swarm embedded in a fully turbulent disc is subject to strong excitation of the velocity dispersion, leading to collisional destruction of bodies with radii R_p < 100 km. Significant diffusion of planetesimal semimajor axes also arises, leading to large-scale spreading of the planetesimal population throughout the inner regions of the protoplanetary disc, in apparent contradiction of constraints provided by the distribution of asteroids within the asteroid belt. In this paper, we examine the dynamics of planetesimals embedded in vertically stratified turbulent discs, with and without dead zones. Our main aims are to examine the turbulent excitation of the velocity dispersion, and the radial diffusion, of planetesimals in these discs. We employ three dimensional MHD simulations [...], along with an equilibrium chemistry model [...] We find that planetesimals in fully turbulent discs develop large random velocities that will lead to collisional destruction/erosion for bodies with sizes below 100 km, and undergo radial diffusion on a scale \sim 2.5 au over a 5 Myr disc life time. But planetesimals in a dead zone experience a much reduced excitation of their random velocities, and equilibrium velocity dispersions lie between the disruption thresholds for weak and strong aggregates for sizes R_p < 100 km. We also find that radial diffusion occurs over a much reduced length scale \sim 0.25 au over the disc life time, this being consistent with solar system constraints. We conclude that planetesimal growth via mutual collisions between smaller bodies cannot occur in a fully turbulent disc. By contrast, a dead zone may provide a safe haven in which km-sized planetesimals can avoid mutual destruction through collisions.Comment: 18 pages, 13 figures, 3 tables, MNRAS in press, minor corrections to match the published versio

    WISE/NEOWISE Observations of the Hilda Population: Preliminary Results

    Full text link
    We present the preliminary analysis of 1023 known asteroids in the Hilda region of the Solar System observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). The sizes of the Hildas observed range from 3200\sim 3 - 200km. We find no size - albedo dependency as reported by other projects. The albedos of our sample are low, with a weighted mean value pV=0.055±0.018p_V = 0.055\pm0.018, for all sizes sampled by the NEOWISE survey. We observed a significant fraction of the objects in the two known collisional families in the Hilda population. It is found that the Hilda collisional family is brighter, with weighted mean albedo of pV=0.061±0.011p_V = 0.061\pm0.011, than the general population and dominated by D-type asteroids, while the Schubart collisional family is darker, with weighted mean albedo of (pV=0.039±0.013p_V = 0.039\pm0.013). Using the reflected sunlight in the two shortest WISE bandpasses we are able to derive a method for taxonomic classification of 10\sim 10% of the Hildas detected in the NEOWISE survey. For the Hildas with diameter larger than 30km there are 6715+767^{+7}_{-15}% D-type asteroids and 265+1726^{+17}_{-5}% C-/P-type asteroids (with the majority of these being P-types).Comment: Accepted for publication in Astrophysical Journal. Electronic table to be published on the publishers websit

    Minimotif miner 2nd release: a database and web system for motif search

    Get PDF
    Minimotif Miner (MnM) consists of a minimotif database and a web-based application that enables prediction of motif-based functions in user-supplied protein queries. We have revised MnM by expanding the database more than 10-fold to approximately 5000 motifs and standardized the motif function definitions. The web-application user interface has been redeveloped with new features including improved navigation, screencast-driven help, support for alias names and expanded SNP analysis. A sample analysis of prion shows how MnM 2 can be used. Weblink: http://mnm.engr.uconn.edu, weblink for version 1 is http://sms.engr.uconn.edu

    Signatures of the post-hydration heating of highly aqueously altered CM carbonaceous chondrites and implications for interpreting asteroid sample returns

    Get PDF
    The CM carbonaceous chondrites have all been aqueously altered, and some of them were subsequently heated in a parent body environment. Here we have sought to understand the impact of short duration heating on a highly aqueously altered CM through laboratory experiments on Allan Hills (ALH) 83100. Unheated ALH 83100 contains 83 volume per cent serpentine within the fine-grained matrix and altered chondrules. The matrix also hosts grains of calcite and dolomite, which are often intergrown with tochilinite, Fe(Ni) sulphides (pyrrhotite, pentlandite), magnetite and organic matter. Some of the magnetite formed by replacement of Fe(Ni) sulphides that were accreted from the nebula. Laboratory heating to 400 °C has caused partial dehydroxylation of serpentine and loss of isotopically light oxygen leading to an increase in bulk δ18O and fall in Δ17O. Tochilinite has decomposed to magnetite, whereas carbonates have remained unaltered. With regards to infrared spectroscopy (4000–400 cm-1; 2.5–25 µm), heating to 400 °C has resulted in decreased emissivity (increased reflectance), a sharper and more symmetric OH band at 3684 cm-1 (2.71 µm), a broadening of the Si—O stretching band together with movement of its minimum to longer wavenumbers, and a decreasing depth of the Mg—OH band (625 cm-1; 16 µm). The Si—O bending band is unmodified by mild heating. With heating to 800 °C the serpentine has fully dehydroxylated and recrystallized to ∼Fo60/70 olivine. Bulk δ18O has further increased and Δ17O decreased. Troilite and pyrrhotite have formed, and recrystallization of pentlandite has produced Fe,Ni metal. Calcite and dolomite were calcined at ∼700 °C and in their place is an un-named Ca-Fe oxysulphide. Heating changes the structural order of organic matter so that Raman spectroscopy of carbon in the 800 °C sample shows an increased (D1 + D4) proportional area parameter. The infrared spectrum of the 800 °C sample confirms the abundance of Fe-bearing olivine and is very similar to the spectrum of naturally heated stage IV CM Pecora Escarpment 02010. The temperature-related mineralogical, chemical, isotopic and spectroscopic signatures defined in ALH 83100 will help to track the post-hydration thermal histories of carbonaceous chondrite meteorites, and samples returned from the primitive asteroids Ryugu and Bennu
    corecore