280 research outputs found

    Identifying Activated T Cells in Reconstituted RAG Deficient Mice Using Retrovirally Transduced Pax5 Deficient Pro-B Cells

    Get PDF
    Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP) and a far-red fluorescent protein from Heteractis crispa (HcRed). LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L) promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deifcient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells

    Integrated signaling in developing lymphocytes: The role of DNA damage responses

    Get PDF
    Lymphocyte development occurs in a stepwise progression through distinct developmental stages. This ordered maturation ensures that cells express a single, non-autoreactive antigen receptor, which is the cornerstone of a diverse adaptive immune response. Expression of a mature antigen receptor requires assembly of the antigen receptor genes by the process of V(D)J recombination, a reaction that joins distant gene segments through DNA double-strand break (DSB) intermediates. These physiologic DSBs are generated by the recombinase-activating gene (RAG) -1 and -2 proteins, and their generation is regulated by lymphocyte and developmental stage-specific signals from cytokine receptors and antigen receptor chains. Collectively, these signals ensure that V(D)J recombination of specific antigen receptor genes occurs at discrete developmental stages. Once generated, RAG-induced DSBs activate the ataxia-telangiectasia mutated (ATM) kinase to orchestrate a multifaceted DNA damage response that ensures proper DSB repair. In response to RAG DSBs, ATM also regulates a cell type-specific transcriptional response, and here we discuss how this genetic program integrates with other cellular cues to regulate lymphocyte development

    The anti-apoptotic factor Bcl-2 can functionally substitute for the B cell survival but not for the marginal zone B cell differentiation activity of BAFF.

    Get PDF
    The TNF family ligand B cell-activating factor (BAFF, BLyS, TALL-1) is an essential factor for B cell development. BAFF binds to three receptors, BAFF-R, transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA), but only BAFF-R is required for successful survival and maturation of splenic B cells. To test whether the effect of BAFF is due to the up-regulation of anti-apoptotic factors, TACI-Ig-transgenic mice, in which BAFF function is inhibited, were crossed with transgenic mice expressing FLICE-inhibitory protein (FLIP) or Bcl-2 in the B cell compartment. FLIP expression did not rescue B cells, while enforced Bcl-2 expression restored peripheral B cells and the ability to mount T-dependent antibody responses. However, many B cells retained immaturity markers and failed to express normal amounts of CD21. Marginal zone B cells were not restored and the T-independent IgG3, but not IgM, response was impaired in the TACI-IgxBcl-2 mice. These results suggest that BAFF is required not only to inhibit apoptosis of maturating B cells, but also to promote differentiation events, in particular those leading to the generation of marginal zone B cells

    Crucial Role for BAFF-BAFF-R Signaling in the Survival and Maintenance of Mature B Cells

    Get PDF
    Defects in the expression of either BAFF (B cell activating factor) or BAFF-R impairs B cell development beyond the immature, transitional type-1 stage and thus, prevents the formation of follicular and marginal zone B cells, whereas B-1 B cells remain unaffected. The expression of BAFF-R on all mature B cells might suggest a role for BAFF-R signaling also for their in vivo maintenance. Here, we show that, 14 days following a single injection of an anti-BAFF-R mAb that prevents BAFF binding, both follicular and marginal zone B cell numbers are drastically reduced, whereas B-1 cells are not affected. Injection of control, isotype-matched but non-blocking anti-BAFF-R mAbs does not result in B cell depletion. We also show that this depletion is neither due to antibody-dependent cellular cytotoxicity nor to complement-mediated lysis. Moreover, prevention of BAFF binding leads to a decrease in the size of the B cell follicles, an impairment of a T cell dependent humoral immune response and a reduction in the formation of memory B cells. Collectively, these results establish a central role for BAFF-BAFF-R signaling in the in vivo survival and maintenance of both follicular and marginal zone B cell pools

    RAG-mediated DNA double-strand breaks activate a cell type-specific checkpoint to inhibit pre-B cell receptor signals

    Get PDF
    DNA double-strand breaks (DSBs) activate a canonical DNA damage response, including highly conserved cell cycle checkpoint pathways that prevent cells with DSBs from progressing through the cell cycle. In developing B cells, pre–B cell receptor (pre–BCR) signals initiate immunoglobulin light (Igl) chain gene assembly, leading to RAG-mediated DNA DSBs. The pre–BCR also promotes cell cycle entry, which could cause aberrant DSB repair and genome instability in pre–B cells. Here, we show that RAG DSBs inhibit pre–BCR signals through the ATM- and NF-κB2–dependent induction of SPIC, a hematopoietic-specific transcriptional repressor. SPIC inhibits expression of the SYK tyrosine kinase and BLNK adaptor, resulting in suppression of pre–BCR signaling. This regulatory circuit prevents the pre–BCR from inducing additional Igl chain gene rearrangements and driving pre–B cells with RAG DSBs into cycle. We propose that pre–B cells toggle between pre–BCR signals and a RAG DSB-dependent checkpoint to maintain genome stability while iteratively assembling Igl chain genes

    Multi-component assessment of chronic obstructive pulmonary disease: an evaluation of the ADO and DOSE indices and the global obstructive lung disease categories in international primary care data sets

    Get PDF
    Acknowledgements We thank Sian Williams of the International Primary Care Respiratory Group for her help and encouragement with the project. The OPCRD database was made available courtesy of the Respiratory Effectiveness Group and RIRL and the data were kindly prepared for analysis by Julie von Ziegenweidt. Funding The International Primary Care Respiratory Group (IPCRG) provided funding for this research project as an UNLOCK group study for which the funding was obtained through an unrestricted grant by Novartis AG, Basel, Switzerland. The latter funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Database access for the OPCRD was provided by the Respiratory Effectiveness Group (REG) and Research in Real Life; the OPCRD statistical analysis was funded by REG. The Bocholtz Study was funded by PICASSO for COPD, an initiative of Boehringer Ingelheim, Pfizer and the Caphri Research Institute, Maastricht University, The Netherlands.Peer reviewedPublisher PD

    Enforced Expression of the Transcriptional Coactivator OBF1 Impairs B Cell Differentiation at the Earliest Stage of Development

    Get PDF
    OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow: a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage. The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice. Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation

    Development of an isoform-specific gene suppression system: the study of the human Pax-5B transcriptional element

    Get PDF
    The transcription factor Pax-5, is vital during B lymphocyte differentiation and is known to contribute to the oncogenesis of certain cancers. The Pax-5 locus generates multiple yet structurally related mRNA transcripts through the specific activation of alternative promoter regions and/or alternative splicing events which poses challenges in the study of specific isoform function. In this study, we investigated the function of a major Pax-5 transcript, Pax-5B using an enhanced version of the Hepatitis Delta Virus ribozyme (HDV Rz) suppression system that is specifically designed to recognize and cleave the human Pax-5B mRNA. The activity of these ribozymes resulted in the specific suppression of the Pax-5B transcripts without altering the transcript levels of other closely related Pax-5 isoforms mRNAs both in vitro and in an intracellular setting. Following stable transfection of the ribozymes into a model B cell line (REH), we showed that Pax-5B suppression led to an increase of CD19 mRNA and cell surface protein expression. In response to this Pax-5B specific deregulation, a marked increase in apoptotic activity compared to control cell lines was observed. These results suggest that Pax-5B has distinct roles in physiological processes in cell fate events during lymphocyte development
    corecore