194 research outputs found
Gene therapy with mesenchymal stem cells expressing IFN-ß ameliorates neuroinflammation in experimental models of multiple sclerosis
[Background and Purpose]: Recombinant IFN‐ß is one of the first‐line treatments in multiple sclerosis (MS), despite its lack of efficacy in some patients. In this context, mesenchymal stem cells (MSCs) represent a promising therapeutic alternative due to their immunomodulatory properties and multipotency. Moreover, by taking advantage of their pathotropism, these cells can be genetically modified to be used as carriers for delivering or secreting therapeutic drugs into injured tissues. Here, we report the therapeutic effect of systemic delivery of adipose‐derived MSCs (AdMSCs), transduced with the IFN‐β gene, into mice with experimental autoimmune encephalomyelitis (EAE).[Experimental Approach]: Relapsing–remitting and chronic progressive EAE were induced in mice. Cells were injected i.v. Disease severity, inflammation and tissue damage were assessed clinically, by flow cytometry of spleens and histopathological evaluation of the CNS respectively.[Key Results]: Genetic engineering did not modify the biological characteristics of these AdMSCs (morphology, growth rate, immunophenotype and multipotency). Furthermore, the transduction of IFN‐ß to AdMSCs maintained and, in some cases, enhanced the functional properties of AdMSCs by ameliorating the symptoms of MS in EAE models and by decreasing indications of peripheral and central neuro‐inflammation.[Conclusion and Implications]: Gene therapy was found to be more effective than cell therapy in ameliorating several clinical parameters in both EAE models, presumably due to the continuous expression of IFN‐β. Furthermore, it has significant advantages over AdMSC therapy, and also over systemic IFN‐ß treatment, by providing long‐term expression of the cytokine at therapeutic concentrations and reducing the frequency of injections, while minimizing dose‐limiting side effects.This work was supported by Fondo de Investigaciones Sanitarias ISCIII (Spain) and Fondo Europeo de Desarrollo Regional (FEDER) from the European Union through the research grants PI12/01097 and PI15/00963 and ISCIII Red de Terapia Celular TerCel RD12/0019/0006 to F.M., by the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía‐FEDER/Fondo de Cohesion Europeo (FSE) de Andalucía through the research grants P09‐CTS‐04532, PI‐57069 and PAIDI‐Bio‐326 to F.M. and PI‐0160/2012 to K.B. M.J.P.‐M. has been supported by grants from Red Temática de Investigación Cooperativa Red Española de Esclerosis Múltiple REEM (RD07/0060 and RD12/0032). B.O. is financed by a contract from Excelent Project CTS‐7670/11 from Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía)
Assessing the Permeability of Engineered Capillary Networks in a 3D Culture
Many pathologies are characterized by poor blood vessel growth and reduced nutrient delivery to the surrounding tissue, introducing a need for tissue engineered blood vessels. Our lab has developed a 3D co-culture method to grow interconnected networks of pericyte-invested capillaries, which can anastamose with host vasculature following implantation to restore blood flow to ischemic tissues. However, if the engineered vessels contain endothelial cells (ECs) that are misaligned or contain wide junctional gaps, they may function improperly and behave more like the pathologic vessels that nourish tumors. The purpose of this study was to test the resistance to permeability of these networks in vitro, grown with different stromal cell types, as a metric of vessel functionality. A fluorescent dextran tracer was used to visualize transport across the endothelium and the pixel intensity was quantified using a customized MATLAB algorithm. In fibroblast-EC co-cultures, the dextran tracer easily penetrated through the vessel wall and permeability was high through the first 5 days of culture, indicative of vessel immaturity. Beyond day 5, dextran accumulated at the periphery of the vessel, with very little transported across the endothelium. Quantitatively, permeability dropped from initial levels of 61% to 39% after 7 days, and to 7% after 2 weeks. When ECs were co-cultured with bone marrow-derived mesenchymal stem cells (MSCs) or adipose-derived stem cells (AdSCs), much tighter control of permeability was achieved. Relative to the EC-fibroblast co-cultures, permeabilities were reduced 41% for the EC-MSC co-cultures and 50% for the EC-AdSC co-cultures after 3 days of culture. By day 14, these permeabilities decreased by 68% and 77% over the EC-fibroblast cultures. Co-cultures containing stem cells exhibit elevated VE-cadherin levels and more prominent EC-EC junctional complexes when compared to cultures containing fibroblasts. These data suggest the stromal cell identity influences the functionality and physiologic relevance of engineered capillary networks
Endothelial Progenitors: A Consensus Statement on Nomenclature
Endothelial progenitor cell (EPC) nomenclature remains ambiguous and there is a general lack of concordance in the stem cell field with many distinct cell subtypes continually grouped under the term “EPC.” It would be highly advantageous to agree on standards to confirm an endothelial progenitor phenotype and this should include detailed immunophenotyping, potency assays, and clear separation from hematopoietic angiogenic cells which are not endothelial progenitors. In this review, we seek to discourage the indiscriminate use of “EPCs,” and instead propose precise terminology based on defining cellular phenotype and function. Endothelial colony forming cells and myeloid angiogenic cells are examples of two distinct and well‐defined cell types that have been considered EPCs because they both promote vascular repair, albeit by completely different mechanisms of action. It is acknowledged that scientific nomenclature should be a dynamic process driven by technological and conceptual advances; ergo the ongoing “EPC” nomenclature ought not to be permanent and should become more precise in the light of strong scientific evidence. This is especially important as these cells become recognized for their role in vascular repair in health and disease and, in some cases, progress toward use in cell therapy. Stem Cells Translational Medicine 2017;6:1316–132
In-depth blood immune profiling of Good syndrome patients
[Introduction]: Good syndrome (GS) is a rare adult-onset immunodeficiency first described in 1954. It is characterized by the coexistence of a thymoma and hypogammaglobulinemia, associated with an increased susceptibility to infections and autoimmunity. The classification and management of GS has been long hampered by the lack of data about the underlying immune alterations, a controversy existing on whether it is a unique diagnostic entity vs. a subtype of Common Variable Immune Deficiency (CVID).[Methods]: Here, we used high-sensitive flow cytometry to investigate the distribution of up to 70 different immune cell populations in blood of GS patients (n=9) compared to age-matched CVID patients (n=55) and healthy donors (n=61).[Results]: All 9 GS patients displayed reduced B-cell counts -down to undetectable levels (<0.1 cells/μL) in 8/9 cases-, together with decreased numbers of total CD4+ T-cells, NK-cells, neutrophils, and basophils vs. age-matched healthy donors. In contrast, they showed expanded TCRγδ+ T-cells (p ≤ 0.05). Except for a deeper B-cell defect, the pattern of immune cell alteration in blood was similar in GS and (age-matched) CVID patients. In depth analysis of CD4+ T-cells revealed significantly decreased blood counts of naïve, central memory (CM) and transitional memory (TM) TCD4+ cells and their functional compartments of T follicular helper (TFH), regulatory T cells (Tregs), T helper (Th)2, Th17, Th22, Th1/Th17 and Th1/Th2 cells. In addition, GS patients also showed decreased NK-cell, neutrophil, basophil, classical monocyte and of both CD1c+ and CD141+ myeloid dendritic cell counts in blood, in parallel to an expansion of total and terminal effector TCRγδ+ T-cells. Interestingly, those GS patients who developed hypogammaglobulinemia several years after the thymoma presented with an immunological and clinical phenotype which more closely resembled a combined immune humoral and cellular defect, with poorer response to immunoglobulin replacement therapy, as compared to those in whom the thymoma and hypogammaglobulinemia were simultaneously detected.[Discussion]: Our findings provide a more accurate definition of the immune cell defects of GS patients and contribute to a better discrimination among GS patients between those with a pure B-cell defect vs. those suffering from a combined immunodeficiency with important consequences on the diagnosis and management of the disease.AT-V is supported by a grant from the Junta de Castilla y León (Fondo Social Europeo, Orden EDU/601/2020, Valladolid, Spain). This study has been founded by the Instituto de Salud Carlos III (ISCIII) through the project “PI20/01712” and co-founded by the European Union.Peer reviewe
Single cell spatial analysis reveals inflammatory foci of immature neutrophil and CD8 T cells in COVID-19 lungs
Single cell spatial interrogation of the immune-structural interactions in COVID −19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis
Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels
[EN] In this work some relevant processes for the preparation of liquid hydrocarbon fuels and fuel additives
from cellulose, hemicellulose and triglycerides derived platform molecules are discussed. Thus, it is
shown that a series of platform molecules such as levulinic acid, furans, fatty acids and polyols can be
converted into a variety of fuel additives through catalytic transformations that include reduction, esterification,
etherification, and acetalization reactions. Moreover, we will show that liquid hydrocarbon fuels
can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenolysis, hydrogenation,
decarbonylation/descarboxylation etc.) with the adjustment of the molecular weight via C C coupling
reactions (e.g. aldol condensation, hydroxyalkylation, oligomerization, ketonization) of the reactive
platform molecules.This work has been supported by the Spanish Government-MINECO through Consolider Ingenio 2010-Multicat and CTQ.-2011-27550, ITQ thanks the "Program Severo Ochoa" for financial support.Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry. 16(2):516-547. https://doi.org/10.1039/c3gc41492bS51654716
Unique Responses of Stem Cell-Derived Vascular Endothelial and Mesenchymal Cells to High Levels of Glucose
Diabetes leads to complications in selected organ systems, and vascular endothelial cell (EC) dysfunction and loss is the key initiating and perpetuating step in the development of these complications. Experimental and clinical studies have shown that hyperglycemia leads to EC dysfunction in diabetes. Vascular stem cells that give rise to endothelial progenitor cells (EPCs) and mesenchymal progenitor cells (MPCs) represent an attractive target for cell therapy for diabetic patients. Whether these vascular stem/progenitor cells succumb to the adverse effects of high glucose remains unknown. We sought to determine whether adult vascular stem/progenitor cells display cellular activation and dysfunction upon exposure to high levels of glucose as seen in diabetic complications. Mononuclear cell fraction was prepared from adult blood and bone marrow. EPCs and MPCs were derived, characterized, and exposed to either normal glucose (5 mmol/L) or high glucose levels (25 mmol/L). We then assayed for cell activity and molecular changes following both acute and chronic exposure to high glucose. Our results show that high levels of glucose do not alter the derivation of either EPCs or MPCs. The adult blood-derived EPCs were also resistant to the effects of glucose in terms of growth. Acute exposure to high glucose levels increased caspase-3 activity in EPCs (1.4x increase) and mature ECs (2.3x increase). Interestingly, MPCs showed a transient reduction in growth upon glucose challenge. Our results also show that glucose skews the differentiation of MPCs towards the adipocyte lineage while suppressing other mesenchymal lineages. In summary, our studies show that EPCs are resistant to the effects of high levels of glucose, even following chronic exposure. The findings further show that hyperglycemia may have detrimental effects on the MPCs, causing reduced growth and altering the differentiation potential
How effective are on-farm conservation land management strategies for preserving ecosystem services in developing countries? A systematic map protocol
Background
An extensive body of literature in the field of agro-ecology claims to show the positive effects that maintenance of ecosystem services can have on sustainably meeting future food demand, by making farms more productive and resilient, and contributing to better nutrition and livelihoods of farmers. In Africa alone, some research has estimated a two-fold yield increase if food producers capitalize on new and existing knowledge from science and technology. Site-specific strategies adopted with the aim of improving ecosystem services may incorporate principles of multifunctional agriculture, sustainable intensification and conservation agriculture. However, a coherent synthesis and review of the evidence of these claims is largely absent, and the quality of much of this literature is questionable. Moreover, inconsistent effects have commonly been reported, while empirical evidence to support assumed improvements is largely lacking.
Objectives
This systematic map is stimulated by an interest to (1) collate evidence on the effectiveness of on-farm conservation land management for preserving and enhancing ecosystem services in agricultural landscapes, by drawing together the currently fragmented and multidisciplinary literature base, and (2) geographically map what indicators have been used to assess on-farm conservation land management. For both questions, we will focus on 74 low-income and developing countries, where much of the world’s agricultural expansion is occurring, yet 80% of arable land is already used and croplands are yielding well below their potential.
Methods/Design
To this end, reviewers will systematically search bibliographic databases for peer-reviewed research from Web of Science, SCOPUS, AGRICOLA, AGRIS databases and CAB abstracts, and grey literature from Google Scholar, and 22 subject-specific or institutional websites. Boolean search operators will be used to create search strings where applicable. Ecosystem services included in the study are pollination services; pest-, carbon-, soil-, and water-regulation; nutrient cycling; medicinal and aromatic plants; fuel wood and cultural services. Outputs of the systematic map will include a database, technical report and an online interactive map, searchable by topic. The results of this map are expected to provide clarity about synergistic outcomes of conservation land management, which will help support local decision-making
Dendritic Cells Take up and Present Antigens from Viable and Apoptotic Polymorphonuclear Leukocytes
Dendritic cells (DC) are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs) as a result of being co-attracted by interleukin-8 (IL-8), for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA) protein, were able to cross-present the antigen to CD8 (OT-1) and CD4 (OT-2) TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2d) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2d PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2b DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2d) are coinjected in the footpad of mice with autologous DC (H-2b). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC
Catalysing sustainable fuel and chemical synthesis
Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands
- …