228 research outputs found

    New NIR spectro-polarimetric modes for the SCExAO instrument

    Get PDF
    Polarization Differential Imaging (PDI) is one of the most productive modes of current high-contrast imagers. Dozens of new protoplanetary, transition and debris disks were imaged recently for the first time, helping us understand the processes of planet formation, and giving clues on the mass of potential planets inside these disks, even if they cannot be imaged directly. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is equipped with a fast visible dual-camera polarimetric module, VAMPIRES, already producing valuable scientific observations of protoplanetary disks and dust shells. In addition, we recently commissioned two new polarimetric modules in the infrared. The first one is a spectro-polarimetric mode using the CHARIS Integral Field Spectrograph (IFS). A Wollaston prism was added in front of the IFS, reducing the field-of-view to 2x1 arcsec to accommodate for the imaging of both polarizations on the same detector without sacrificing the spectral resolution of the instrument, in any of its spectral modes. The second module, similar to VAMPIRES, uses a low-noise high frame rate C-RED ONE camera combined with a Ferroelectric Liquid Crystal (FLC) device to modulate and record the polarization at high-speed, freezing effectively the atmospheric speckles for higher precision. We present on-sky results of the new polarimetric capabilities taken during the commissioning phase. In addition, we show future capabilities that are already scheduled to increase the performance of these modules, especially the addition of non-redundant masks, as well as a polarimetric vector Apodizing Phase Plate (vAPP) coronagraph

    First on-sky demonstration of an integrated-photonic nulling interferometer: the GLINT instrument

    Get PDF
    The characterization of exoplanets is critical to understanding planet diversity and formation, their atmospheric composition, and the potential for life. This endeavour is greatly enhanced when light from the planet can be spatially separated from that of the host star. One potential method is nulling interferometry, where the contaminating starlight is removed via destructive interference. The GLINT instrument is a photonic nulling interferometer with novel capabilities that has now been demonstrated in on-sky testing. The instrument fragments the telescope pupil into sub-apertures that are injected into waveguides within a single-mode photonic chip. Here, all requisite beam splitting, routing, and recombination are performed using integrated photonic components. We describe the design, construction, and laboratory testing of our GLINT pathfinder instrument. We then demonstrate the efficacy of this method on sky at the Subaru Telescope, achieving a null-depth precision on sky of ∼10⁻⁴ and successfully determining the angular diameter of stars (via their null-depth measurements) to milliarcsecond accuracy. A statistical method for analysing such data is described, along with an outline of the next steps required to deploy this technique for cutting-edge science

    GPS network monitor the Western Alps deformation over a five year period: 1993-1998

    Get PDF
    GPS surveys in the Western Alps, performed in the time span 1993-2003, estimated the current crustal deformation of this area.Published63-763.2. Tettonica attivaJCR Journalreserve

    Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity.

    Get PDF
    Epidemiological and clinical reports indicate that SARS-CoV-2 virulence hinges upon the triggering of an aberrant host immune response, more so than on direct virus-induced cellular damage. To elucidate the immunopathology underlying COVID-19 severity, we perform cytokine and multiplex immune profiling in COVID-19 patients. We show that hypercytokinemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels paired with deep-immune profiling shows that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Antigen presenting machinery expression is also reduced in critical disease. Furthermore, we report that neutrophils contribute to disease severity and local tissue damage by amplification of hypercytokinemia and the formation of neutrophil extracellular traps. Together our findings suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity

    Dynamical effects of subducting ridges: Insights from 3-D laboratory models

    Full text link
    We model the subduction of buoyant ridges and plateaus to study their effect on slab dynamics. Oceanic ridges parallel to the trench have a stronger effect on the process of subduction because they simultaneously affect a longer trench segment. Large buoyant slab segments sink more slowly into the asthenosphere, and their subduction result in a diminution of the velocity of subduction of the plate. We observe a steeping of the slab below those buoyant anomalies, resulting in smaller radius of curvature of the slab, that augments the energy dissipated in folding the plate and further diminishes the velocity of subduction. When the 3D geometry of a buoyant plateau is modelled, the dip of the slab above the plateau decreases, as a result of the larger velocity of subduction of the dense "normal" oceanic plate on both sides of the plateau. Such a perturbation of the dip of the slab maintains long time after the plateau has been entirely incorporated into the subduction zone. We compare experiments with the present-day subduction zone below South America. Experiments suggest that a modest ridge perpendicular to the trench such as the present-day Juan Fernandez ridge is not buoyant enough to modify the slab geometry. Already subducted buoyant anomalies within the oceanic plate, in contrast, may be responsible for some aspects of the present-day geometry of the Nazca slab at depth

    Technical requirements and optical design of the Hi-5 spectrometer

    Full text link
    Hi-5 is a proposed L’ band high-contrast nulling interferometric instrument for the visitor focus of the Very Large Telescope Interferometer (VLTI). As a part of the ERC consolidator project called SCIFY (Self-Calibrated Interferometry For exoplanet spectroscopY), the instrument aims to achieve sufficient dynamic range and angular resolution to directly image and characterize the snow line of young extra-solar planetary systems. The spectrometer is based on a dispersive grism and is located downstream of an integrated optics beam- combiner. To reach the contrast and sensitivity specifications, the outputs of the I/O chip must be sufficiently separated and properly sampled on the Hawaii-2RG detector. This has many implications for the photonic chip and spectrometer design. We present these technical requirements, trade-off studies, and phase-A of the optical design of the Hi-5 spectrometer in this paper. For both science and contract-driven reasons, the instrument design currently features three different spectroscopic modes (R=20, 400, and 2000). Designs and efficiency estimates for the grisms are also presented as well as the strategy to separate the two polarization states.SCIF

    Citrullination regulates pluripotency and histone H1 binding to chromatin.

    Get PDF
    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.Cancer Research UKThis is the author accepted manuscript. The final version is available from the Nature Publishing Group via http://dx.doi.org/10.1038/nature1294

    Cenozoic deformation of Iberia: a model for intraplate mountain building and basin development based on analogue modelling

    Get PDF
    Inferences from analogue models support lithospheric folding as the primary response to large-scale shortening manifested in the present day topography of Iberia. This process was active from the late Oligocene-early Miocene during the Alpine orogeny and was probably enhanced by reactivation of inherited Variscan faults. The modeling results confirm the dependence of fold wavelength on convergence rate and hence the strength of the layers of the lithosphere such that fold wavelength is longest for fast convergence rates favoring whole lithosphere folding. Folding is associated with the formation of dominantly pop-up type mountain ranges in the brittle crust and thickening of the ductile layers in the synforms of the buckle folds by flow. The mountain ranges are represented by upper crustal pop-ups forming the main topographic relief. The wavelengths of the topographic uplifts, both, in model and nature suggest mechanical decoupling between crust and mantle. Moreover, our modeling results suggest that buckling in Iberia took place under rheological conditions where the lithospheric mantle is stronger than the lower crust. The presence of an indenter, inducing oblique shortening in response to the opening of the King's Trough in the north western corner of the Atlantic Iberian margin controls the spacing and obliquity of structures. This leads to the transfer of the deformation from the moving walls towards the inner part of the model, creating oblique structures in both brittle and ductile layers. The effect of the indenter, together with an increase on the convergence rate produced more complex brittle structures. These results show close similarities to observations on the general shape and distribution of mountain ranges and basins in Iberia, including the Spanish Central System and Toledo Mountains.Peer reviewe

    Review and scientific prospects of high-contrast optical stellar interferometry

    Get PDF
    This is the final version. Available from SPIE via the DOI in this recordSPIE Astronomical Telescopes + Instrumentation conference, 14 - 18 December 2020, Online OnlyHigh-contrast optical stellar interferometry generally refers to instruments able to detect circumstellar emission at least a few hundred times fainter than the host star at high-angular resolution (typically within a few λ/D). While such contrast levels have been enabled by classical modal-filtered interferometric instruments such as VLTI/PIONIER, CHARA/FLUOR, and CHARA/MIRC the development of instruments able to filter out the stellar light has significantly pushed this limit, either by nulling interferometry for on-axis observations (e.g., PFN, LBTI, GLINT) or by off-axis classical interferometry with VLTI/GRAVITY. Achieving such high contrast levels at small angular separation was made possible thanks to significant developments in technology (e.g., adaptive optics, integrated optics), data acquisition (e.g., fringe tracking, phase chopping), and data reduction techniques (e.g., nulling self-calibration). In this paper, we review the current status of high-contrast optical stellar interferometry and present its key scientific results. We then present ongoing activities to improve current ground-based interferometric facilities for high-contrast imaging (e.g., Hi-5/VIKING/BIFROST of the ASGARD instrument suite, GRAVITY+) and the scientific milestones that they would be able to achieve. Finally, we discuss the long-term future of high-contrast stellar interferometry and, in particular, ambitious science cases that would be enabled by space interferometry (e.g., LIFE, space-PFI) and large-scale ground-based projects (PFI).European Research Council (ERC
    corecore