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Liège, Belgium
cUniv. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France

dNASA Goddard Space Flight Center, Exoplanets & Stellar Astrophysics Laboratory,
Greenbelt, USA

eMax Planck Institute for extraterrestrial Physics, Giessenbachstraße 1, 85748 Garching,
Germany

fSteward Observatory, Department of Astronomy, University of Arizona, Tucson, Arizona,
USA

gUniversity of Michigan, Ann Arbor, United States
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ABSTRACT

High-contrast optical stellar interferometry generally refers to instruments able to detect circumstellar emission
at least a few hundred times fainter than the host star at high-angular resolution (typically within a few λ/D).
While such contrast levels have been enabled by classical modal-filtered interferometric instruments such as
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VLTI/PIONIER, CHARA/FLUOR, and CHARA/MIRC the development of instruments able to filter out the
stellar light has significantly pushed this limit, either by nulling interferometry for on-axis observations (e.g.,
PFN, LBTI, GLINT) or by off-axis classical interferometry with VLTI/GRAVITY. Achieving such high contrast
levels at small angular separation was made possible thanks to significant developments in technology (e.g.,
adaptive optics, integrated optics), data acquisition (e.g., fringe tracking, phase chopping), and data reduction
techniques (e.g., nulling self-calibration). In this paper, we review the current status of high-contrast optical
stellar interferometry and present its key scientific results. We then present ongoing activities to improve current
ground-based interferometric facilities for high-contrast imaging (e.g., Hi-5/VIKING/BIFROST of the ASGARD
instrument suite, GRAVITY+) and the scientific milestones that they would be able to achieve. Finally, we
discuss the long-term future of high-contrast stellar interferometry and, in particular, ambitious science cases
that would be enabled by space interferometry (e.g., LIFE, space-PFI) and large-scale ground-based projects
(PFI).

Keywords: high angular resolution imaging, interferometry, nulling, VLTI, LBTI, KIN, PFN, PFI, LIFE,
Hi-5, BIFROST, GRAVITY, ASGARD, planet formation, protoplanetary disks, extrasolar planets, exoplanets,
exozodiacal disks

1. INTRODUCTION

Direct imaging is a powerful and historically important observing technique in astronomy. From Galileo’s lens
to modern telescopes, scientific progress and discoveries have been guided by the development of imaging instru-
ments with constantly improving angular resolution, sensitivity, and dynamic range (or contrast). With optical
stellar interferometry, there is a routine solution to achieve very high angular resolution but classical visibility
or closure phase measurements currently hardly compete with single-dish imaging instruments in terms of con-
trast. Current classical modal-filtered interferometric instruments such as VLTI/PIONIER, CHARA/FLUOR,
and CHARA/MIRC can achieve contrast levels down to ∼10−3 within the diffraction limit of the individual
telescopes (λ/D) and down to a few milli-arcseconds (mas) using precise visibility and closure phase measure-
ments.1–3 This parameter space, only accessible with stellar interferometers, enabled significant scientific results
on young stellar objects, bright mature planetary systems, binary companions, and stellar physics.4 However,
to access the planetary regime, better contrasts are required (see Figure 1).

One of the main challenges to achieve high-contrast observations is to accurately remove the overwhelmingly
dominant flux of the host star from the scientific signal, similar to coronagraphy in single-pupil direct imaging.
Over the last twenty years, a series of nulling interferometers5 have been deployed on state-of-the-art facilities,
both across single telescopes and as separate aperture interferometers. These include the BracewelL Infrared
Nulling Cryostat,6 the Keck Interferometer Nuller,7 the Palomar Fiber Nuller,8,9 the Large Binocular Telescope
Interferometer,10 and DRAGONFLY/GLINT on Subaru/SCExAO.11 Considering the most recent three instru-
ments (i.e., GLINT, PFN, and LBTI), the use of nulling interferometry allowed to gain one order of magnitude
on the final post-processed contrast levels down to ∼10−4. This can be explained theoretically by the fact that
error terms linear in phase and/or amplitude are present at both peak and quadrature, but all linear error terms
vanish at null, leaving only smaller quadratic error terms.9 The high null depth accuracies obtained with nulling
interferometers were also made possible thanks to a combination of factors: the ability to use single-mode fibers
(PFN) or integrated optics (GLINT), the use of the telescope’s extreme adaptive optics system as a cross-aperture
fringe tracker, and the introduction of a significantly improved technique for null-depth measurement, i.e., nulling
self calibration.8,12 Much was learned about instrumental limitations with the scientific exploitation of these
instruments. High-sensitivity mid-IR instruments such as the LBTI is mostly limited by the high thermal back-
ground radiation and the excess low frequency noise associated with the detector. At shorter wavelength, where
the thermal background is less of an issue, the main limitations are related to high-frequency phase fluctuations
and polarization errors. These limitations currently make state-of-the-art nulling interferometer operate one to
two orders of magnitudes above the fundamental photon noise limit.13,14

Recently, new data acquisition techniques15–18 have been proposed in order to better calibrate the instruments
and to reach their fundamental photon noise limit. In parallel, a breakthrough has been achieved recently with
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Figure 1. K-band (left) and L-band (right) contrast on known exoplanets vs angular separation (exoplanet data downloaded
from NASA exoplanet archiv on November 23rd, 2020). The inner working angle of the VLT/UT, ELT, and VLTI are
shown by the dashed vertical lines.

VLTI/GRAVITY demonstrating contrast levels down to 10−5 at a few λ/D leading to the first direct observation
of an exoplanet with long-baseline interferometry19 and the first direct observation of an exoplanet discovered
by radial velocity by the same team.20 These measurements provided record-breaking precision on the astrom-
etry (and hence mass) and spectrum of any directly imaged planet to date. These scientific achievements and
contrast levels were enabled by the extreme stability of the GRAVITY instrument and maturity of the VLTI
infrastructure. Off-axis observations also enable to get rid of most of the stellar light, similar to what a nulling
combination would do. One of the main technological challenges today is to enable this level of contrast for
on-axis scientific observations by nulling the host star.

In this paper, we review first the scientific results of high-contrast optical interferometry in Section 2. In
Section 3, we present the scientific prospects with existing ground-based instruments (currently being upgraded)
and with new visitor instruments currently being investigated. Ambitious science goals enabled by space inter-
ferometry are presented in Section 4. We conclude this review of high-contrast optical stellar interferometry in
Section 5.

2. SCIENCE RESULTS

2.1 Exozodiacal dust

Exozodiacal disks (a.k.a. exozodis) are the extrasolar counterpart of the zodiacal dust found in the solar system.
They are both a key to understanding the evolution of planetary systems21 and a source of noise for the direct
detection of Earth-like exoplanets.22–24 Exozodiacal dust emits primarily in the near-infrared to mid-infrared
where it is outshone by the host star. Due to the small angular scales involved (1 AU at 10 pc corresponds to
0.1 arcsec), the angular resolution required to spatially disentangle the dust from the stellar emission currently
requires the use of interferometry. Thus, exozodis have so far mostly been observed at the CHARA array1,25–27

and the VLTI28–30 in the near-infrared, and at KIN31,32 and the LBTI33–35 in the mid-infrared . These observa-
tions reached contrasts of a few 10−4 to a few 10−3, leading to vital statistical insights into the occurrence rates
of exozodis as a function of other properties of the systems such as the presence of cold, Kuiper belt-like dust
disks or stellar age and spectral type. Follow-up observations with VLTI/PIONIER, VLTI/GRAVITY, and the
PFN of the most interesting systems are now being analysed. In particular, the observations obtained with the
PFN, which was decommissioned in 2015, show no dust detected at the ∼0.3% null upper limit level among the
systems with hot dust previously detected by CHARA/FLUOR.26 This points to dust too close in for the PFN
to resolve with its 3.2-m baseline (Mennesson et al. in prep). For warm dust, the LBTI has completed its core
mission in summer 2018 by successfully finishing the Hunt for Observable Signatures of Terrestrial planetary
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Systems (HOSTS) survey.34,35 The survey used the instrument’s N band nulling interferometric capabilities to
search a total of 38 stars for habitable zone (HZ) dust, so-called exozodiacal dust. With a detection rate of 26%
and a sensitivity to dust levels only a few times the Solar system level for the most suitable stars, the LBTI is
now able to study common exozodiacal dust systems. The results have shown that there is a clear connection
between cold debris disk dust in a system and its HZ dust, but recent work based on the detections has shown
that the naive assumption of Poynting-Robertson drag from the outer dust disks to the HZ is insufficient to ex-
plain the HZ dust levels.36 The statistical results have shown that the dust does generally not prevent exo-Earth
imaging with a future space mission such as HabEx37 or LUVOIR38 and that even a smaller mission can achieve
its imaging goals. However, smaller missions may struggle with the spectroscopic characterization of detected
planets. Furthermore, the observations are not yet sensitive enough to provide strong constraints on the HZ
dust levels of individual stars in preparation fro exo-Earth imaging. Further observations with the LBTI are
now being planned (see Section 3.5) and new instruments are being investigated to cover the Southern sky in
the mid-infrared (see Section 3.3).

2.2 Exoplanet detection and characterization

The first attempts to detect exoplanets with interferometry used closure phases which are mostly immune to
systematic errors from seeing variations. One major limitation of this technique is that the star-planet separation
must be resolved while also requiring contrasts of brighter than a few 10−4, meaning only a few hot Jupiters
can be easily accessed (see Figure 1). One helpful effect happens when the star is highly resolved, effectively
“boosting” the closure phase signal substantially.39,40 Few papers document the many attempts made to use
this technique, but one of the earliest was Absil et al.,41 who set a 5 × 10−3 limit for new companions close
to β Pic using VLTI/AMBER. The first contrast limit better than 10−3 was made by Zhao et al. (2011)2

for upsilon Andromeda B, but with no detection. New attempts with CHARA/MIRCX and VLTI/GRAVITY
are underway. New combiners that measure closure phases using nulled outputs of pairwise combiners could
dramatically improve the signal-to-noise of this technique15,16,42 but this still requires lab development and
on-sky testing. Note that if phase referencing or differential phase approaches could work, then more objects
could be done since photocenter shifts caused by planets are linear with angular resolution, unlike closure phases
which disappear when separation is marginally-resolved.43

Recently, a breakthrough has been achieved with VLTI/GRAVITY demonstrating contrast levels down to
10−5 at a few λ/D leading to the first direct observation of an exoplanet with long-baseline interferometry19 and
the first direct observation of an exoplanet discovered by radial velocity by the same team.20 These measurements
provided record-breaking precision on the astrometry (and hence mass) and spectrum of any directly imaged
planet to date. These scientific achievements and contrast levels were enabled by the extreme stability of the
GRAVITY instrument and maturity of the VLTI infrastructure. Off-axis observations also enable to get rid of
most of the stellar light, similar to what a nulling combination would do. Future upgrades of GRAVITY with
the GRAVITY+ project will further improve the exoplanet characterization capability of the VLTI.

3. SCIENCE PROSPECTS FROM THE GROUND

3.1 BIFROST: J-band interferometry and high spectral resolution

The Beam-combination Instrument for studying the Formation and pRoperties of Stars and planeTary systems
(BIFROST) is a possible visitor instrument for the VLTI as part of a suite of up to three instruments, to-
gether with an L-band nuller (Hi-5/VIKING) and a second-generation fringe tracker (Heimdallr). The three
instruments share a common low-order adaptive optics systems to optimise light injection and aim to adopt a
shared communication protocol. For the optical design of BIFROST both an all-in-one coaxial beam combina-
tion scheme44–46 and an integrated optics design47 are considered. In order to enable long integration times on
the high-spectral resolution arm, we will utilize fringe tracking through the recently-commissioned GRA4MAT
mode or the planned second-generation fringe tracker. The goal of the BIFROST instrument concept is to open
the short-wavelength window for the VLT Interferometer and to enable interferometry at spectral resolution
up to λ/∆λ = 25 000.48 In the context of high-contrast stellar interferometry, these characteristics will enable
several advancements. Many object classes and astrophysical phenomena exhibit more favourable contrast in
spectral line emission than in the continuum. One prominent example is planet formation, where the forming
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protoplanets are still embedded in optically thick disks and asymmetric disk dust structures dilute the planet
emission and can result in false-positive detections. In these complex environments, accretion-tracing line emis-
sion might provide a powerful diagnostic for detecting young planets.49 The Y and J-band (1 − 1.3µm) are in
many respect the ideal wavelength range for spectro-interferometric studies, as they contain spectral line tracers
that are not available in other wavebands, such as the accretion-tracing He I line. Also, the Paschen β and γ
hydrogen recombination lines have higher equivalent width than the commonly-used hydrogen lines accessible at
longer wavelengths (Brackett series, etc.), enabling observations at higher signal-to-noise. Furthermore, the high
spectral resolution will allow detailed characterisation of the kinematics of the gas that is accreted or ejected
from the system.

Pushing towards shorter wavelengths will allow us to achieve a higher angular resolution than other VLTI
instruments, enabling the characterisation of companions down to sub-milliarcsecond separation. Also, the
GRAVITY instrument has demonstrated that off-axis interferometry can combine the star-light suppression
provided by adaptive optics with star-light suppression from interferometry, where photons from an off-axis
planet are separated in Fourier phase from stellar photons.50 The GRAVITY+ project foresees the installation
of improved adaptive optics systems on the UTs, which should provide good Strehl into the J-band, pushing the
inner working angle for off-axis interferometry down to λ/D = 25 mas. Applying this technique alongside the
GRAVITY+ K-band combiner to the J-band will enable high-contrast characterisation of close-in companions
and provide access to the rich molecular spectral features that are accessible in this complementary waveband.

3.2 GLINT: H-band nulling interferometry

The Guided-Light Interferometric Nulling Technology (GLINT) instrument is a multi-baseline multi-wavelength
interferometric nuller,11 deployed within the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system.
Its goal is to pave the way to the development of a science-ready nuller aiming to detect and image exoplanets
and study planetary formation. Light in the H-band from the telescope is fragmented in four apertures by an
aperture mask in the pupil plane, with individual beams aligned and injected into an integrated-photonic chip
by a computer-controlled segmented mirror and a lenslet array. The chip contains waveguides, splitters and
couplers to make the light interfere. The outputs after optical processing within the chip consist of a null and an
antinull output for every pair of input beams separately: detectors on these waveguides measure the intensities
of the dark and bright fringe respectively. The chip also delivers one photometric output for every input beam,
enabling continuous monitoring of input intensities and so to correct for instantaneous imbalances in the arms
of the interferometer in post-processing. After the chip, the light is dispersed by a prism of spectral resolution
of 160 then projected onto the detector. We characterised the instrument and reached a null depth precision
of 10−4 and successfully measured the diameters of α Boo and δ Vir which sizes are respectively 20 and 10
mas, i.e. below half and below a fifth of the formal diffraction limit of the instrument of 50 mas (Martinod et
al., submitted). Next steps are the detection of a companion in a binary system. The exploitation of GLINT
shows that atmospheric turbulence, particularly low-order aberrations like low-wind effect, limits the maximum
contrast reachable. So it leads to the development of a photonic-component able to correct low-order aberrations
and to do fringe tracking while performing nulling.

3.3 Hi-5: L-band nulling interferometry

Hi-5 is a high-contrast L-band nulling interferometric instrument for the visitor focus of the VLTI.51 By leveraging
its state-of-the-art infrastructure, long baselines, and strategic position in the Southern hemisphere, a dedicated
high-contrast VLTI instrument will be able to carry out several exoplanet programmes to study young Jupiter-
like exoplanets at the most relevant angular separations (i.e., close to the snow line) and better understand how
planets form and evolve. First, with a contrast of at least 10−5 and an inner working angle approximately ∼200
(resp. 20) times better than current 10-m class single-dish telescopes (resp. ELTs), the VLTI would be able to
measure the L-band spectra of approximately 25 known exoplanets discovered by radial velocity and currently
inaccessible with direct imaging or transit instruments, possibly doubling the number of exoplanet characterised
by direct imaging.52 In particular, the high-angular resolution provided by the VLTI will give access to the
regions of planetary systems located within the snow lines where there is strong evidence for a break in the
exoplanet distribution.53 The thermal near-infrared is also particularly rich in molecular features,54 including
H2O, methane (CH4), carbon dioxide (CO2), acetylene (C2H2), and hydrogen cyanide (HCN), which will enable
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the detailed characterisation of the chemical composition of the observed exoplanets. Second, another science
goal of Hi-5 is to perform a dedicated survey of nearby young stellar moving groups to search for new giant planets
at angular distances inaccessible by current instruments and future ELTs. Approximately 280 young (<50 Myr)
and relatively bright (K<10) stars can be observed from Paranal.52 Thanks to its high angular resolution, the
VLTI would achieve a higher detection probability than that of instruments installed on 8-m class telescopes and
the ELT.16 A third important science goal of Hi-5 is the detection and characterization of exozodiacal dust. One
of the main challenges at the moment is linking the near-infrared and the mid-infrared detections, which critically
constrain the systems’ architectures and the properties and origin of the dust. However, so far no connection
between the detections in the two wavelength ranges has been found. A new VLTI instrument operating in the
thermal near-infrared will be an ideal tool to trace the spectral energy distributions of near-infrared detected
exozodis toward longer wavelengths and of mid-infrared detected exozodis toward shorter wavelengths in order
to connect the two and to understand non-detections in one wavelength range in the light of detections in the
other. Moreover, no sensitive interferometric instrument operating in the thermal near-infrared is available in the
Southern hemisphere so far. VLTI/MATISSE is not designed for high-contrast observations and will be limited
to the characterisation of the brightest systems already detected in the near-infrared.55 With Hi-5, it will be
possible to carry out the first large survey of habitable zone dust in the Southern hemisphere.

The Hi-5 project received fundings from OPTICON and was recently funded by the European Research
Council (2020-2025) with the main goal to bring the instrument at the visitor focus of the VLTI by the end of
2023. In the long term, Hi-5 will be a cornerstone in the roadmap leading to the characterisation of terrestrial
exoplanets and the search for life beyond Earth (see Section 4.2).

3.4 GRAVITY+

GRAVITY+ is an upgrade of the GRAVITY instrument.56 The on-going upgrade will provide an extreme Adap-
tive Optics to replace the 20-year old system that feeds the instrument (and with which GRAVITY has already
shown unprecedented performances at short separations). This is a critical ingredient to increase the contrast
of GRAVITY. For the first time the need to optimize a dedicated high-contrast mode is part of GRAVITY, and
should pay by increased contrast ratio.

One of the science goal of GRAVITY+ is to prepare the instrument for the incoming GAIA releases. For stars
at 20 pc from the Sun and a nominal 5-year mission, Gaia’s peak sensitivity corresponds to planets at 100 mas
or 2 AU from their host star. This is just too small for measuring their infrared flux with classical imaging.
But it falls well in the range of interferometric imaging. At a separation of 130 mas, β Pictoris c is actually a
prototypical example (see Figure 2). We expect a few of them within the current contrast limit of GRAVITY
(many others at larger separations will be observable with classical imaging, but they are much less challenging
for the formation theories).

3.5 LBTI: LM-band Fizeau interferometry and N-band nulling interferometry

A description of the LBTI has been presented by Hinz et al. (2016)57 and an update will be presented in this
series.58 Since the completion of the HOSTS and LEECH surveys,59 the LBTI team has consolidated funding
and long-term support for the instrument and worked on a long-term plan for the instrument. On the technical
side, the team has focused on maturing the adaptive optics (AO) assisted direct imaging modes, including the
Arizona Lenslet for Exoplanet Spectroscopy (ALES) thermal infrared integral field spectroscopy mode60 and a
sensitive high-contrast imaging mode with the NOMIC61 mid-infrared camera (PI: K. Wagner). In addition, the
team has studied a range of upgrades to enhance the instrument’s nulling and Fizeau interferometric capabilities
and on making the Fizeau mode more routine. On nulling interferometry, the team has produced a detailed study
of the current instrument performance and of realistic improvements.62 It was shown that the two dominant
sources of uncertainty are low frequency telescope and instrument vibrations and detector Excess Low Frequency
Noise (ELFN). The mitigation of vibrations has been made a priority by the observatory and is in progress. The
team is also testing a new H1RG detector with a sensitivity up to a wavelength of 13µm63 that promises to be
ELFN free. It has been shown that eliminating the ELFN and realistic reduction of vibrations can improve the
sensitivity by a factor of three. This would make a strong case for a renewed HOSTS survey. In addition, the
LBTI team has been awarded NASA/XRP funding (PI: S. Ertel) for the characterization of previously detected
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Figure 2. Sensitivity region of Gaia, classical imaging and interferometric imaging, overlaid to known planets from the
NASA database. Because of observational and astrophysical biases, most known young planets are at >10 AU (brown
in this picture). Thanks to its exhaustive approach, Gaia will detect many more of these young planets at <10 AU. We
know this population of young planets should exist because we already detect its older counterpart (blue in this picture).
GRAVITY+ is unique to characterise the intrinsic infrared flux and thus the formation entropy of these young planets.

exozodiacal dust.64 The planned observations in two filters across the N band and with a wide position angle
coverage of the interferometric baseline will result in a detailed characterization of the radial and azimuthal
structure and the spectral shape of the dust emission.

The LBTI’s Fizeau imaging interferometry mode has been rarely used due to the instrument team’s previous
science focus on nulling interferometry. It is currently being matured for routine operations.65,66 Currently,
one of the main limitations for for precision, high-fidelity, and high-contrast interferometric imaging with a
23-m equivalent aperture is the limited sensitivity of the PhaseCam fringe tracker67 (limiting magnitude K ∼
4.5). PhaseCam is currently equipped with a PICNIC detector and an upgrade to a SAPHIRA detector is in
preparation (funded, PI: J. Stone). This upgrade together with other minor improvements is expected to result
in a new limiting magnitude of K ∼ 10. Together with the recently completed Single-conjugated adaptive Optics
Upgrade for the LBT (SOUL)68 with a high-performance limiting magnitude of R ∼ 12.5, this will open up
a significant number of young stellar objects in nearby star forming regions for high contrast 23-m resolution
L and M band imaging (Fig. 3). The Fizeau mode will also be used for general astronomical observations such
as the high-contrast imaging search for planets around nearby, bright stars, Solar system science, extra-galactic
astronomy, and the study of evolved stars. The mode can be further extended to be combined with coronagraphy
and ALES integral field spectroscopy. On the longer term, there is the possibility to extend the Fizeau imaging
mode toward shorter wavelengths, including potentially visible wavelengths.69

3.6 PFI: Planet Formation Imager

PFI70 is currently a science-driven, international initiative to develop the roadmap for a future ground-based
facility that will be optimised to image planet-forming disks on the spatial scale where the protoplanets are
assembled, which is the Hill sphere of the forming planets. The goal of PFI will be to detect and characterise
protoplanets during their first ∼ 100 million years and trace how the planet population changes due to migration
processes, unveiling the processes that determine the final architecture of exoplanetary systems. With ∼ 20
telescope elements and baselines of ∼ 3 km, the PFI concept is optimised for imaging complex scenes at thermal
near-infrared and mid-infrared wavelengths (3-12µm) and at 0.1 milliarcsecond resolution.
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Figure 3. Taurus young stellar objects and transition disks that can be imaged with the current and future fringe tracking
capabilities of the LBTI.

4. SCIENCE PROSPECTS FROM SPACE

4.1 Demonstration missions on small platforms

The path towards space-based interferometry is regularly discussed in the community and these discussions
often involve the need for precursor missions.71,72 Concepts of small-scale space-based infrared nulling inter-
ferometers were seriously considered in the 2000’s both in Europe and in the US: the Fourier-Kelvin Stellar
Interferometer73,74 and Pegase.75 More recently, concepts for interferometric platforms have been proposed,
such as FIRST-S,76 a 3U CubeSat with a Lithium Niobate nulling combiner. The technical challenges of the
project are: star tracking, beam combination, and nulling capabilities. The optical baseline of the interferometer
would be 30 cm, giving a 2.2AU spatial resolution at distance of 10 pc. The scientific objective of this mis-
sion would be to study the visible emission of exozodiacal light in the habitable zone around the closest stars.
Another project to demonstrate a linear formation-flying astronomical interferometer in low Earth orbit is also
currently under study.77 To detect exoplanets, larger platforms are required as recently studied by Dandumont
et al. (2020).78 Figure 4 shows the exoplanet yield analysis assuming the Kepler occurrence rate and assuming
four different space-based nulling interferometer concepts (2-aperture fibered Bracewell). Two CubeSats (base-
line: 0.5m/1.0m and apertures: 0.08m), an ESA PROBA-like mission (baseline: 5.0m and apertures: 0.25m),
and the FKSI concept (baseline: 12.5m and apertures: 0.5m) were considered. They show that, even without
platform stability constraints, CubeSats can hardly detect giant exoplanets. A PROBA-like mission could detect
more than 120 exoplanets and a more ambitious mission such as FKSI could detect 250 exoplanets. One of
their conclusions is that small platforms are well suited to test and validate critical technological components
needed for a larger mission and perform scientific observations (see Dandumont et al. in this series for more
information). Further investigations are however required to estimate the impact of instrumental noise.
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Figure 4. Mean number of exoplanet detection as a function of stellar insolation and planet radius assuming the Kepler
occurrence rate and four different instrument configurations:78 a 6U cubesat with a baseline of 0.5 m and two apertures
of 8 cm in diameter, a 12U cubesat with a baseline of 1 m and two apertures of 8 cm in diameter, a PROBA-size platform
with a baseline of 5 m and two apertures of 25 cm in diameter, and a FKSI concept with a baseline of 12.5 m and two
apertures of 50 cm in diameter. The exoplanet yield is computed based on pure photometric assumptions and does not
assume instrumental noise related to tip/tilt and OPD errors.

4.2 LIFE: the Large Interferometer For Exoplanets

LIFE is an initiative∗ to develop the science, technology and a roadmap for an ambitious space mission that
will allow humankind to detect dozens of warm, terrestrial exoplanets and hundreds of exoplanets overall at
mid-infrared (MIR) wavelengths.79,80 For most of the detected exoplanets direct estimates of their effective
temperature and radius will be available, and a for a significant subset the atmospheric composition will be
investigated including the search for potential bio-signatures.80–82 Characterizing exoplanet atmospheres using
their thermal emission at MIR wavelengths — compared to studies at optical/near-infrared wavelength looking
at planets in reflected light — offers the possibility to study a broader set of molecular features83 and get a better
understanding of the atmospheric structure.84 Hence, in particular for questions related to the habitability of
exoplanets, a mission like LIFE offers unprecedented scientific potential.

The current baseline design of LIFE features a 4-aperture interferometer array with a 6:1 baseline ratio to
reduce the impact of instability noise.85,86 A beam combiner spacecraft is located at the center of the array. The
size of the individual apertures is currently under study, but based on detection yield simulations including all
relevant astrophysical noise sources (see, Figure 5, diameters of 2-3.5 m are under consideration. The aperture size
is primarily driven by the number of detectable planets and the time-on-target required for in-depth atmospheric

∗www.life-space-mission.com
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Figure 5. Expected LIFE exoplanet detection yield for a 2.5 year search phase and assuming an aperture size of D=3.5 m
(cf. Quanz et al., submitted). The exoplanet classification scheme used here is the same as in Kopparapu et al. (2018).90

The Monte-Carlo approach underlying these results is described in previous studies.80,91

characterization. The current wavelength range requirement is 4-18.5µm, but additional studies are underway
for further verification. A spectral resolution of at least R = 30, but better R = 50, seems required in order
to reliably quantify the abundance ratios of main molecular species in the atmosphere of an Earth-twin planet
at several pc distance. The minimum mission lifetime is 5-6 years in order to have sufficient time for both a
dedicated search phase, to identify the most interesting and promising targets, and a characterization phase for
in-depth investigations of a subset of those. LIFE shall be launched to the Earth-Sun L2 point.

One of the crucial next steps to advance the technological readiness of LIFE is related to nulling at MIR
wavelengths. While in the context of Darwin and TPF-I the general feasibility of the required null-depth
and stability was demonstrated by Martin et al. (2012),87 these earlier lab experiments were done at ambient
temperatures and with high flux levels. A corresponding experiment, but under cryogenic conditions and with flux
levels in-line with those expected from astronomical sources, is underway in the form of the Nulling Interferometric
Cryogenic Experiment (NICE) at ETH Zurich (Gheorghe et al., in prep.). A more general overview of the
readiness of key technologies for a space mission like LIFE was presented in recent reviews.88,89

5. CONCLUSION

The field of high-contrast stellar interferometry has made significant progress over the past decade with record-
breaking high-contrast observations with nulling interferometric instruments and the first detection and charac-
terization of exoplanets with long-baseline interferometry. Current state-of-the-art contrasts amount to ∼10−4

within the diffraction limit of individual telescopes using nulling interferometry (H, K, and N bands) and to
∼10−5 for off-axis observations using dual-feed interferometry at the VLTI with the GRAVITY instrument (K
band). Pushing these high-contrast capabilities to smaller inner working angles is today crucial to make scientific
progress in various fields of astrophysics and, in particular, in exoplanet science. While current instruments are
currently being upgraded to improve their sensitivity or contrast limits (e.g., GLINT, LBTI, MIRCX, GRAV-
ITY+), this can also be achieved by developing new instruments operating at shorter wavelength (e.g., BIFROST
at J band) or by building the first nulling instrument for the VLTI (Hi-5/VIKING at L band). New ideas and
technology solutions have also emerged to improve the contrast of long-baseline interferometers such as com-
bining nulling and closure phase, kernel nulling, advanced fringe tracking, and high-dispersion interferometry.
These techniques now need to be tested and validated on sky. In the long term, these developments will serve as
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a key technology demonstrator for future major interferometric instruments such as PFI and LIFE for the most
ambitious science cases.
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[26] Absil, O., Defrère, D., Coudé du Foresto, V., Di Folco, E., Mérand, A., Augereau, J.-C., Ertel, S., Hanot, C.,
Kervella, P., Mollier, B., Scott, N., Che, X., Monnier, J. D., Thureau, N., Tuthill, P. G., ten Brummelaar,
T. A., McAlister, H. A., Sturmann, J., Sturmann, L., and Turner, N., “A near-infrared interferometric survey
of debris-disc stars. III. First statistics based on 42 stars observed with CHARA/FLUOR,” Astronomy and
Astrophysics 555, A104 (July 2013).
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