72 research outputs found

    The Oral and Skin Microbiomes of Captive Komodo Dragons Are Significantly Shared with Their Habitat.

    Get PDF
    Examining the way in which animals, including those in captivity, interact with their environment is extremely important for studying ecological processes and developing sophisticated animal husbandry. Here we use the Komodo dragon (Varanus komodoensis) to quantify the degree of sharing of salivary, skin, and fecal microbiota with their environment in captivity. Both species richness and microbial community composition of most surfaces in the Komodo dragon's environment are similar to the Komodo dragon's salivary and skin microbiota but less similar to the stool-associated microbiota. We additionally compared host-environment microbiome sharing between captive Komodo dragons and their enclosures, humans and pets and their homes, and wild amphibians and their environments. We observed similar host-environment microbiome sharing patterns among humans and their pets and Komodo dragons, with high levels of human/pet- and Komodo dragon-associated microbes on home and enclosure surfaces. In contrast, only small amounts of amphibian-associated microbes were detected in the animals' environments. We suggest that the degree of sharing between the Komodo dragon microbiota and its enclosure surfaces has important implications for animal health. These animals evolved in the context of constant exposure to a complex environmental microbiota, which likely shaped their physiological development; in captivity, these animals will not receive significant exposure to microbes not already in their enclosure, with unknown consequences for their health. IMPORTANCE Animals, including humans, have evolved in the context of exposure to a variety of microbial organisms present in the environment. Only recently have humans, and some animals, begun to spend a significant amount of time in enclosed artificial environments, rather than in the more natural spaces in which most of evolution took place. The consequences of this radical change in lifestyle likely extend to the microbes residing in and on our bodies and may have important implications for health and disease. A full characterization of host-microbe sharing in both closed and open environments will provide crucial information that may enable the improvement of health in humans and in captive animals, both of which experience a greater incidence of disease (including chronic illness) than counterparts living under more ecologically natural conditions

    Next steps for conservation agriculture.

    Get PDF
    The origins, history, and recent advances in Conservation Agriculture (CA) are reported. CA is now practiced worldwide on some 200 million hectares, important for mitigating climate change and ensuring food security. Its bedrock is Zero Tillage (ZT) with crop rotation and retention of crop residues. CA approaches Or-19 ganic Agriculture (OA) when coupled to biological control providing opportunity for OA to become truly sustainable. Ley Farming (LF) and agroforestry with ZT are important for carbon sequestration and land use intensification. Hidden cost: each ton of carbon immobilizes 83 kg of N, 29 kg of P, and 14 kg of S. Industry-backed Regenerative Agriculture (RA) variants have no scientific definition, but generally adopt CA. Sustainable, profitable, and compatible new technologies are emerging and CA needs to embrace them to present a holistic, sustainable package to the farmer. How? A single definition for agricultural sustainability via a multi-stakeholder world congress would standardize certification and de-confuse the market. RA describes exactly what CA does for soil health and all farmers need to unite around a new "Combined Regenerative Agriculture" (CRA) to lobby for adequate payments for environmental services. Expansion of CA is critical for world sustainability. Many gaps and constraints exist, especially for smallholders

    Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Leray, M., Wilkins, L. G. E., Apprill, A., Bik, H. M., Clever, F., Connolly, S. R., De Leon, M. E., Duffy, J. E., Ezzat, L., Gignoux-Wolfsohn, S., Herre, E. A., Kaye, J. Z., Kline, D. I., Kueneman, J. G., McCormick, M. K., McMillan, W. O., O’Dea, A., Pereira, T. J., Petersen, J. M., Petticord, D. F., Torchin, M. E., Thurber, R. V., Videvall, E., Wcislo, W. T., Yuen, B., Eisen, J. A. . Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution. Plos Biology, 19(8), (2021): e3001322, https://doi.org/10.1371/journal.pbio.3001322.Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host’s physiological capacities; however, the identity and functional role(s) of key members of the microbiome (“core microbiome”) in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems’ capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts’ plastic and adaptive responses to environmental change requires (i) recognizing that individual host–microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.Financial support for the workshop was provided by grant GBMF5603 (https://doi.org/10.37807/GBMF5603) from the Gordon and Betty Moore Foundation (W.T. Wcislo, J.A. Eisen, co-PIs), and additional funding from the Smithsonian Tropical Research Institute and the Office of the Provost of the Smithsonian Institution (W.T. Wcislo, J.P. Meganigal, and R.C. Fleischer, co-PIs). JP was supported by a WWTF VRG Grant and the ERC Starting Grant 'EvoLucin'. LGEW has received funding from the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement No. 101025649. AO was supported by the Sistema Nacional de Investigadores (SENACYT, Panamá). A. Apprill was supported by NSF award OCE-1938147. D.I. Kline, M. Leray, S.R. Connolly, and M.E. Torchin were supported by a Rohr Family Foundation grant for the Rohr Reef Resilience Project, for which this is contribution #2. This is contribution #85 from the Smithsonian’s MarineGEO and Tennenbaum Marine Observatories Network.

    Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota

    Get PDF
    The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
    corecore