60 research outputs found

    Premature Expression of the Latency-Related RNA Encoded by Bovine Herpesvirus Type 1 Correlates With Higher Levels of Beta Interferon RNA Expression in Productively Infected Cells

    Get PDF
    Bovine herpesvirus type 1 (BHV-1) is an important pathogen that can initiate bovine respiratory disease complex. Like other members of the subfamily Alphaherpesvirinae, BHV-1 establishes latency in sensory neurons. The latency-related (LR) gene expresses a family of alternatively spliced transcripts in infected sensory neurons that have the potential to encode several LR proteins. An LR mutant virus that contains three stop codons near the 5’ terminus of the first open reading frame in the LR gene does not express two LR proteins or reactivate from latency. In addition, the LR mutant virus induces higher levels of apoptosis in trigeminal ganglionic neurons and grows less efficiently in certain tissues of infected calves. In spite of the reduced pathogenesis, the LR mutant virus, wild-type BHV-1, and the LR rescued virus exhibit identical growth properties in cultured bovine cells. In this study, we demonstrated that during early phases of productive infection the LR mutant virus expressed higher levels of LR-RNA relative to the LR rescued virus or wt BHV-1. Bovine kidney cells infected with the LR mutant virus also induced higher levels of beta interferon RNA and interferon response genes. These results suggest that inappropriate expression of LR-RNA, in the absence of LR protein expression, may influence the latency-reactivation cycle and pathogenic potential of BHV-1

    Cabergoline for suppression of puerperal lactation in a prevention of mother-to-child HIV-transmission programme in rural Malawi.

    Get PDF
    This study shows that cabergoline (single oral-dose) is an acceptable, safe and effective drug for suppressing puerperal lactation. It could be of operational benefit not only for artificial feeding, but also for weaning in those that breast-feed within preventive mother-to-child HIV transmission programmes in resource-limited settings

    High altitude adaptation in Daghestani populations from the Caucasus

    Get PDF
    We have surveyed 15 high-altitude adaptation candidate genes for signals of positive selection in North Caucasian highlanders using targeted re-sequencing. A total of 49 unrelated Daghestani from three ethnic groups (Avars, Kubachians, and Laks) living in ancient villages located at around 2,000 m above sea level were chosen as the study population. Caucasian (Adygei living at sea level, N = 20) and CEU (CEPH Utah residents with ancestry from northern and western Europe; N = 20) were used as controls. Candidate genes were compared with 20 putatively neutral control regions resequenced in the same individuals. The regions of interest were amplified by long-PCR, pooled according to individual, indexed by adding an eight-nucleotide tag, and sequenced using the Illumina GAII platform. 1,066 SNPs were called using false discovery and false negative thresholds of ~6%. The neutral regions provided an empirical null distribution to compare with the candidate genes for signals of selection. Two genes stood out. In Laks, a non-synonymous variant within HIF1A already known to be associated with improvement in oxygen metabolism was rediscovered, and in Kubachians a cluster of 13 SNPs located in a conserved intronic region within EGLN1 showing high population differentiation was found. These variants illustrate both the common pathways of adaptation to high altitude in different populations and features specific to the Daghestani populations, showing how even a mildly hypoxic environment can lead to genetic adaptation

    Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes

    Get PDF
    Selenocysteine (Sec) is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS) is the previously identified pyridoxal phosphate-containing protein known as the soluble liver antigen. SecS required selenophosphate and O-phosphoseryl-tRNA([Ser]Sec) as substrates to generate selenocysteyl-tRNA([Ser]Sec). Moreover, it was found that Sec was synthesized on the tRNA scaffold from selenide, ATP, and serine using tRNA([Ser]Sec), seryl-tRNA synthetase, O-phosphoseryl-tRNA([Ser]Sec) kinase, selenophosphate synthetase, and SecS. By identifying the pathway of Sec biosynthesis in mammals, this study not only functionally characterized SecS but also assigned the function of the O-phosphoseryl-tRNA([Ser]Sec) kinase. In addition, we found that selenophosphate synthetase 2 could synthesize monoselenophosphate in vitro but selenophosphate synthetase 1 could not. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that synthesize selenoproteins

    Current commands for high-efficiency torque control of DC shunt motor

    Get PDF
    The current commands for a high-efficiency torque control of a DC shunt motor are described. In the proposed control method, the effect of a magnetic saturation and an armature reaction are taken into account by representing the coefficients of an electromotive force and a torque as a function of the field current, the armature current and the revolving speed. The current commands at which the loss of the motor drive system becomes a minimum are calculated as an optimal problem. The proposed control technique of a motor is implemented on the microprocessor-based control system. The effect of the consideration of the magnetic saturation and the armature reaction on the produced torque and the minimisation of the loss are discussed analytically and experimentally </p

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease
    corecore