902 research outputs found
Balancing and model reduction for discrete-time nonlinear systems based on Hankel singular value analysis
This paper is concerned with balanced realization and model reduction for discrete-time nonlinear systems. Singular perturbation type balanced truncation method is proposed. In this procedure, the Hankel singular values and the related controllability and observability properties are preserved, which is a natural generalization of both the linear discrete-time case and the nonlinear continuous-time case.
High magnitude and rapid incision from river capture: Rhine River, Switzerland
Landscape evolution is controlled by the development and organization of drainage basins. As a landscape evolves, drainage reorganization events can occur via river capture or piracy, whereby one river basin grows at the expense of another. The river downstream of a capture location will generate a transient topographic response as the added water discharge increases sediment transport and erosion efficiency. This erosional response will propagate upstream through both the captured and original river basins. Here we focus on quantifying the impact of drainage reorganization along the Rhine/Aare River system (~45,000 km 2 ) during the late Pliocene/early Pleistocene, where gravel remnants indicate total incision of ~650 m during the last ~4.2 Myr in the region of the recent Aare‐Rhine confluence. We develop a numerical model of drainage capture to quantify the range of possible magnitudes of erosion and the transient river response resulting from the reorganization of the Rhine River. The model accounts for both fluvial incision and sediment transport. Our model estimates 400–800 m of river elevation change (lowering profiles) during the last ~4 Myr due to river capture events, providing an important component to the recent exhumation budget of the Swiss Alpine Foreland. The model indicates a rapid response to capture events (re‐equilibration timescale of ~1 Myr). The predicted incision magnitudes are consistent with incision measured from the elevation of Pliocene and early Pleistocene river gravels, suggesting that across northern Switzerland, a significant amount of incision can be explained by drainage reorganization. Key Points Drainage capture has caused significant erosion along the Rhine River The transient erosional wave propagates quickly through the landscape The incision is a significant fraction of Plio‐Pleistocene erosion in the regionPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99064/1/jgrf20056.pd
Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer
We study the response of an adsorbed monolayer under a driving force as a
model of sliding friction phenomena between two crystalline surfaces with a
boundary lubrication layer. Using Langevin-dynamics simulation, we determine
the nonlinear response in the direction transverse to a high symmetry direction
along which the layer is already sliding. We find that below a finite
transition temperature, there exist a critical depinning force and hysteresis
effects in the transverse response in the dynamical state when the adlayer is
sliding smoothly along the longitudinal direction.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Cognitive facilitation following intentional odor exposure
This paper reviews evidence that, in addition to incidental olfactory pollutants, intentional odor delivery can impact cognitive operations both positively and negatively. Evidence for cognitive facilitation/interference is reviewed alongside four potential explanations for odor-induced effects. It is concluded that the pharmacological properties of odors can induce changes in cognition. However, these effects can be accentuated/attenuated by the shift in mood following odor exposure, expectancy of cognitive effects, and cues to behavior via the contextual association with the odor. It is proposed that greater consideration is required in the intentional utilization of odors within both industrial and private locations, since differential effects are observed for odors with positive hedonic qualities
Data-driven parameterized model order reduction using z-domain multivariate orthonormal vector fitting technique
Del Pezzo surfaces with 1/3(1,1) points
We classify del Pezzo surfaces with 1/3(1,1) points in 29 qG-deformation
families grouped into six unprojection cascades (this overlaps with work of
Fujita and Yasutake), we tabulate their biregular invariants, we give good
model constructions for surfaces in all families as degeneracy loci in rep
quotient varieties and we prove that precisely 26 families admit
qG-degenerations to toric surfaces. This work is part of a program to study
mirror symmetry for orbifold del Pezzo surfaces.Comment: 42 pages. v2: model construction added of last remaining surface,
minor corrections, minor changes to presentation, references adde
What is the evidence for giving chemoprophylaxis to children or students attending the same preschool, school or college as a case of meningococcal disease?
We performed a systematic literature review to assess the effectiveness of chemoprophylaxis for contacts of sporadic cases of invasive meningococcal disease (IMD) in educational settings. No studies directly compared IMD risk in contacts with/without chemoprophylaxis. However, compared to the background incidence, an elevated IMD risk was identified in settings without a general recommendation for chemoprophylaxis in pre-schools [pooled risk difference (RD) 58·2/10⁵, 95% confidence interval (CI) 27·3-89·0] and primary schools (pooled RD 4·9/10⁵, 95% CI 2·9-6·9) in the ~30 days after contact with a sporadic IMD case, but not in other educational settings. Thus, limited but consistent evidence suggests the risk of IMD in pre-school contacts of sporadic IMD cases is significantly increased above the background risk, but lower than in household contacts (pooled RD for household contacts with no chemoprophylaxis vs. background incidence: 480·1/10⁵, 95% CI 321·5-639·9). We recommend chemoprophylaxis for pre-school contacts depending on an assessment of duration and closeness of contact
Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid
The origin of the microscopic motions that lead to stress relaxation in
deeply supercooled liquid remains unclear. We show that in such a liquid the
stress relaxation is locally anisotropic which can serve as the driving force
for the hopping of the system on its free energy surface. However, not all
hopping are equally effective in relaxing the local stress, suggesting that
diffusion can decouple from viscosity even at local level. On the other hand,
orientational relaxation is found to be always coupled to stress relaxation.Comment: 4 pages, 3 figure
Boundary lubrication properties of materials with expansive freezing
We have performed molecular dynamics simulations of solid-solid contacts
lubricated by a model fluid displaying many of the properties of water,
particularly its expansive freezing. Near the region where expansive freezing
occurs, the lubricating film remains fluid, and the friction force decreases
linearly as the shear velocity is reduced. No sign of stick-slip motion is
observed even at the lowest velocities. We give a simple interpretation of
these results, and suggest that in general good boundary lubrication properties
will be found in the family of materials with expansive freezing.Comment: Version to appear in Phys. Rev. Let
Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study
The last decade has seen an explosion in models that describe phenomena in
systems medicine. Such models are especially useful for studying signaling
pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to
showcase current mathematical and statistical techniques that enable modelers
to gain insight into (models of) gene regulation, and generate testable
predictions. We introduce a range of modeling frameworks, but focus on ordinary
differential equation (ODE) models since they remain the most widely used
approach in systems biology and medicine and continue to offer great potential.
We present methods for the analysis of a single model, comprising applications
of standard dynamical systems approaches such as nondimensionalization, steady
state, asymptotic and sensitivity analysis, and more recent statistical and
algebraic approaches to compare models with data. We present parameter
estimation and model comparison techniques, focusing on Bayesian analysis and
coplanarity via algebraic geometry. Our intention is that this (non exhaustive)
review may serve as a useful starting point for the analysis of models in
systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte
- …
