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Abstract Efficient real-time design space exploration, design optimization and sen-
sitivity analysis call for Parameterized Model Order Reduction (PMOR) techniques
to take into account several design parameters, such as geometrical layout or sub-
strate characteristics, in addition to time or frequency. This chapter presents a robust
multivariate extension of the z-domain Orthonormal Vector Fitting technique. The
new method provides accurate and compact rational parametric macromodels based
on numerical electromagnetic simulations or measurements in either frequency-
domain or time-domain. The technique can be seen as adata-drivenPMOR method.

1 Introduction

Nowadays, full-wave electromagnetic methods [9],[17],[11] are widely used to sim-
ulate a variety of complex electromagnetic systems and are considered to be essen-
tial for efficient design. The use of these methods usually results in the computation
of a huge number of field (E,H) or circuit (i,v) unknowns, in the frequency-domain
or time-domain, although users are usually only interested in a few of them at the
input and output ports. These methods provide high accuracy, often at a significant
cost in terms of memory storage and computing time. Therefore, Model Order Re-
duction (MOR) techniques are crucial to reduce the complexity of the model defined
by the full-wave numerical method and the computational cost required by simula-
tions, while retaining the important physical features of the original system [7],[3].
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Efficient real-time design space exploration, design optimization and sensitivity
analysis require the development of accurate parametric broadband macromodels
that approximate the dynamic behavior of a system characterized by several design
parameters, such as geometrical layout or substrate characteristics, in addition to
time or frequency. These applications call for Parameterized Model Order Reduction
(PMOR) techniques.

A frequency-domain technique called Multivariate Orthonormal Vector Fitting
(MOVF) was presented in [4], to compute accurate rational parametric macromod-
els, based on parameterized frequency responses with a highly dynamic behavior.
This technique can be seen as adata-drivenPMOR method. Instead of reducing
the size of the matrices of a parameterized state-space model directly (model-based
PMOR), MOVF builds rational parametric macromodels with a reduced model com-
plexity based on a set of input-output data samples. The goal of the macromodeling
algorithm is to find a multivariate rational function which approximates a large set of
K + 1 data samples{(s,g)k,H(s,g)k}K

k=0 in a least-squares sense. These data sam-
ples depend on the complex frequencys = jω and several additional parameters
g = (g(n))N

n=1 as design variables which describe e.g. the metallizations in an EM
circuit (lengths, widths,...) or the substrate features (thickness, dielectric constant,
losses, ...). The proposed approach results in accurate and compact rational paramet-
ric macromodels of complex electromagnetic systems. A generalization of MOVF
to include parameter derivatives in the modeling process was proposed in [6]. Pa-
rameter derivatives provide additional information about the underlying system and
can often be simulated at a significantly lower computational cost than additional
samples [13],[5],[20],[15]. The inclusion of derivatives can be useful to reduce the
required amount of data samples, while preserving the accuracy of the results. In
this chapter a new technique, the z-domain Multivariate Orthonormal Vector Fitting
(ZD-MOVF) is described, representing thez-domain counterpart of [4]. It is a robust
multivariate extension of thez-domain Orthonormal Vector Fitting technique (ZD-
OVF) proposed in [16],[14],[21]. A microstrip example confirms the ability of the
new algorithm to build parametric macromodels of dynamic systems with a good
accuracy.

2 Background

In this section we explain the generation of z-domain data starting from frequency-
domain or time-domain data and the choice of theλ parameter of the Tustin trans-
form.
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2.1 Generation of z-domain data

Microwave circuits and components can be characterized in frequency-domain or
time-domain by numerical electromagnetic simulations or measurements. To obtain
the corresponding parameterized z-domain response,Hd(z,g), wherez is the com-
plex discrete frequency variable andg is a real design variable, a Tustin (bilinear)
transform:

s−→ z=
λ +s
λ −s

, λ ∈ R+ (1)

can be used starting from frequency-domain dataHc(s,g):

Hc(s,g)−→ Hd

(
z=

λ +s
λ −s

,g

)
(2)

wherec stands for continuous andd for discrete. If time-domain data is available,
under the hypothesis of a negligible or absent aliasing in the sampling process, the
frequency response of a continuous-time system can be computed by applying stan-
dard techniques, such as Fast Fourier Transform (FFT) algorithms on the data sam-
ples:

hd([n],g) = hc(nTs,g) (3)

where the real sequencehd([n],g) is equal to the signal in the time domainhc(t,g)
at the equally spaced time samplesnTs and Ts is the sampling period. Once the
parameterized frequency response is computed, the Tustin transform (1) is used as
before. The obtained z-domain data can be normalized by discrete frequencyz [14].
Once the parametric macromodel is computed in the z-domain, it can be converted
back to the s-domain by using inverse Tustin tranform.

2.2 Choice ofλ of the Tustin transform

The λ parameter of the Tustin transform can be freely chosen [19] under the con-
straint that it is not a real pole of the continuous-time system [1]. The numerical
example in this letter shows that the algorithm is robust with respect to an arbi-
trary choice ofλ , since its value does not affect the accuracy of the results over a
wide range. To avoid harmful numerical conditions, extreme values ofλ have to be
discarded, such as very low (near zero) or very high (near infinity).
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3 Parametric Macromodeling

To simplify the notation, the algorithm is only described for bivariate systems. The
extension to the full multivariate formulation is straightforward. As in [4], the ZD-
MOVF algorithm proposes to represent the parametric macromodel as the ratio of a
bivariate numerator and denominator

R(z,g) =
N(z,g)
D(z,g)

=
∑P

p=0 ∑V
v=0cpvχp(z)ψv(g)

∑P
p=0 ∑V

v=0 c̃pvχp(z)ψv(g)
(4)

whereP andV represent the maximum order of the corresponding basis functions
χp(z) andψv(g) in the complex discrete frequency variablez and the real design
variableg, respectively. To establish the coefficientscpv and c̃pv of numerator and
denominator in (4), the ZD-MOVF algorithm minimizes the Sanathanan-Koerner
(SK) cost function [18] on a set ofK + 1 data samples{(z,g)k,Hd(z,g)k}K

k=0. SK
is an iterative procedure, in the first iteration step of the algorithm (t = 0) Levi’s
cost function [12] is minimized to obtain an initial estimate of the coefficientscpv

and c̃pv. In the following steps (t = 1, ..,T) of the SK iteration, the inverse of the
previously estimated denominatorD(t−1)(z,g) is used as an explicit least-squares
weighting factor. A relaxed non-triviality constraint is added as an additional row in
the system matrix [8], to avoid the trivial null solution and improve the convergence
of the algorithm. Each equation is split in its real and imaginary parts, to ensure that

the model coefficientsc(t)
pv, c̃(t)

pv are real. Scaling each column to unity length [7] is
suitable to improve the numerical accuracy of the results.

4 Choice of basis functions

In this section we describe the choice of the basis functions for the discrete fre-
quency and other parameters.

4.1 Discrete Frequency-Dependent Basis Functions

Based on a prescribed set of stable polesa = {−ap}P
p=1, a set of partial fractions

χp(z,a) is chosen, withχ0(z) = 1. To select the poles two steps are followed: first,
they are chosen in the s-domain as complex conjugate pairs with small real parts
and the imaginary parts linearly spaced over the frequency range of interest [7] and
after that, the Tustin transform (1) is applied to map them from s- to z-domain. A
linear combination of two fractions is chosen to ensure that the residues ofχp(z,a)
andχp+1(z,a) come in perfect conjugate pairs leading to real-valued time domain
responses, i.e. :
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χp(z,a) = z(z+ap)−1 +z(z+ap+1)−1 (5)

χp+1(z,a) = jz(z+ap)−1− jz(z+ap+1)−1 (6)

To improve the numerical stability of the modeling algorithm, the Takenaka-Malmquist
basis functions [10] can be used, as shown in [16]:

χp(z,a) = kp

(
p−1

∏
i=1

1+a∗i z
z+ai

)
(1−z)|1−ap|

(z+ap)(z+ap+1)
(7)

χp+1(z,a) = kp+1

(
p−1

∏
i=1

1+a∗i z
z+ai

)
(1+z)|1+ap|

(z+ap)(z+ap+1)
(8)

where

kp = kp+1 =

√
2

2

√
1−|ap|2 (9)

The orthonormal basis functions can improve the conditioning of the system
equations and are less sensitive to the choice of the initial poles. Their use ensures a
more numerically robust macromodeling procedure [3].

4.2 Parameter-Dependent Basis Functions

The parameter-dependent basis functionsψv(g,b) are also chosen in partial frac-
tion form as a function ofjg, hence in rational form. The set of starting poles
b = {−bv}V

v=1 is composed by complex pairs with small real parts of opposite sign
and imaginary parts linearly spaced over the parameter range of interest, provided
thatψ0(g) = 1. A linear combination of two fractions is used to ensure thatψv(g,b)
andψv+1(g,b) are real functions [4]:

ψv(g,b) = ( jg+bv)
−1− ( jg− (bv)

∗)−1 (10)

ψv+1(g,b) = j( jg +bv)
−1 + j( jg− (bv)

∗)−1 (11)

5 Example: Double folded stub microstrip bandstop filter

The double folded stub microstrip bandstop filter [2] under study is shown in Figure
1. The substrate is0.1270mmthick with a relative dielectric constantεr equal to9.9.
The scattering parameters of the system are simulated by ADS-Momentum1 in the
s-domain and subjected to (2), to obtain the corresponding parametrized z-domain
response.

1 Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
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Fig. 1 Geometry of the double folded stub microstrip bandstop filter [2].

The parametric macromodels of scattering parametersS11 andS21 are built as
functions of the varying length of each folded segmentL ∈ [1.98 mm - 2.40 mm]
and varying spacing between a folded stub and the main lineS∈ [0.061mm -0.243
mm] over the frequency range[5 GHz -20GHz]. The desired model accuracy is set
to −60 dB, which corresponds to 3 significant digits. The initial data grid forS11

andS21 is of size14×10×22 samples(L,S, f req). The corresponding number of
poles is chosen6, 4 and10 for both scattering parameters. Figure 2 and Figure 3
show the magnitude of the trivariate macromodels ofS11 andS21 for the minimum
and maximum values of the spacing variableS.
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Fig. 2 Magnitude of the trivariate macromodels ofS11 (light grey surface) andS21 (dark grey
surface) forS= 0.061mm.
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Fig. 3 Magnitude of the trivariate macromodels ofS11 (light grey surface) andS21 (dark grey
surface) forS= 0.243mm.
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Fig. 4 Histogram : error distributions of the trivariate macromodels ofS11 (light grey) andS21
(dark grey) over 226500 validation samples.

To compute the macromodels only4 and3 iterations of SK method discussed
in Section 3 are needed and the maximum absolute error in the initial data grid
corresponds to−62.84 dB and−67.54 dB, respectively. To confirm the quality of
built macromodels a set of validation data samples is computed on a very dense
grid of size50×30×151 samples. The histogram in Figure 4 shows the number
of validation samples that corresponds to a certain absolute error for both trivariate
macromodels. Figure 4 shows that they have a good overall accuracy and the max-
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imum absolute error over all the validation samples is bounded by−60.17 dB and
−61.06dB for S11 andS21 respectively. The choice of theλ parameter in the Tustin
transform (1) does not influence the model accuracy over a broad range of values
[10−3−1023]. It confirms thatλ is free to choose and illustrates the robustness of
the algorithm.

6 Conclusions

This chapter presents a robust multivariate extension of the z-domain Vector Fit-
ting technique [16],[14],[21], for the calculation of accurate and compact paramet-
ric macromodels of high-speed components. By combining rational basis functions
and the Sanathanan-Koerner least-squares estimator, the robustness of the method
is ensured. An example illustrates the capability of the algorithm to model dynamic
parameterized frequency responses with a good accuracy. Once the multivariate
macromodeling process is completed, the resulting scalable behavior model can ef-
ficiently be employed in real-time design space exploration, fast optimization and
sensitivity analysis.
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14. Y. S. Mekonnen and J. E. Schutt-Ainé, “Broadband Macromodeling of Sampled Frequency
Data Using z-domain Vector Fitting”,IEEE Workshop on Signal Propagation on Intercon-
nects, SPI 2007, Camogli Genova (Italy), pp. 45-48, May 2007.

15. N. K. Nikolova, Y. Li, Y. Li and M. H. Bakr, “Sensitivity Analysis of Scattering Parameters
with Electromagnetic Time-Domain Simulators”,IEEE Transactions on Microwave Theory
and Techniques, vol. 54, no. 4, pp. 1598-1610, April 2006.

16. B. Nouri, R. Achar, M. Nakhla and D. Saraswat, “z-Domain Orthonormal Vector Fitting for
Macromodeling High-Speed Modules Characterized by Tabulated Data”,IEEE Workshop on
Signal Propagation on Interconnects, SPI 2008, Avignon (France), pp. 1-4, May 2008.

17. A. E. Ruehli and P. A. Brennan, “Efficient Capacitance Calculations for Three-Dimensional
Multiconductor Systems”,IEEE Trans. on Microwave Theory and Techniques, vol. 21, no. 2,
pp. 76-82, February 1973.

18. C. Sanathanan and J. Koerner, “Transfer Function Synthesis as a Ratio of two Complex Poly-
nomials”,IEEE Trans. on Automatic Control, vol. 8, no. 1, pp. 56-58, January 1963.

19. K. C. Sou, A. Megretski and L. Daniel, “A Quasi-Convex Optimization Approach to Pa-
rameterized Model Order Reduction”,IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 3, pp. 456-469, March 2008.

20. J. Ureel and D. De Zutter, “A New Method for Obtaining the Shape Sensitivities of Planar
Microstrip Structures by a Full-Wave Analysis ”,IEEE Transactions on Microwave Theory
and Techniques, vol. 44, no. 2, pp. 249-260, February 1996.

21. N. Wong and C. Lei, “IIR Approximation of FIR Filters Via Discrete-Time Vector Fitting”,
IEEE Trans. on Signal Processing, vol. 56, no. 3, pp. 1296-1302, March 2008.


