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Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid
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The origin of the microscopic motions that lead to stress relaxation in deeply supercooled liquid
remains unclear. We show that in such a liquid the stress relaxation is locally anisotropic which can
serve as the driving force for the hopping of the system on its free energy surface. However, not all
hoppings are equally effective in relaxing the local stress, suggesting that diffusion can decouple from
viscosity even at the local level. On the other hand, orientational relaxation is found to be always coupled
to stress relaxation.
Dynamics of supercooled liquid show many fascinat-
ing properties, namely, the nonexponentiality in various
relaxation functions of dynamical variables, such as the
stress, density, composition, polarization, and orientation
[1–5]. One often observes a very slow power law decay
in the intermediate to long times [6]. Although these have
drawn the attention of experimentalists and theoreticians
and have been extensively studied, many aspects still re-
main ill-understood. It is believed that the nature of the
microscopic motion undergoes a drastic change at a tem-
perature TB (a temperature substantially below the melting
temperature, Tm). At the temperature TB, the continuous
hydrodynamic-type motion, which is prevalent at higher
temperature, changes to discontinuous motion. It is also
believed that TB is close to the temperature where effects
of the underlying free energy landscape on the dynamics
are felt for the first time [1]. TB is also found to be close
to the mode coupling temperature, Tc. This change in the
nature of the microscopic motion is believed to be the ori-
gin of the experimentally observed a-b bifurcation [7] and
also the crossover between the rotational and the transla-
tional relaxation times [8].

Because of the complexity of the problem, computer
simulations have played a key role in augmenting our
understanding in this area. In particular, simulations al-
low one to directly look at the microscopic events. The
computer simulation studies of the stress autocorrelation
function in the supercooled liquid could successfully repro-
duce the power law behavior of the stress autocorrelation
function (SAF) [3,4]. However, in the deeply supercooled
liquid, one finds that, within the simulation time, the relax-
ation, after an initial decay (typically 10%–20%), becomes
fully arrested. The microscopic origin of the subsequent
decay is unclear. The computer simulation studies further
show that the orientational and translational hopping of
particles are the only modes present and, hence, the stress
relaxation can happen only via hopping. However, since
the relaxation time is much much longer (could be of the
order of ms or sec), the computer simulation results (which
can explore mostly up to the nanosecond regime and some-
times the microsecond regime) cannot include the effects
of these hoppings. Therefore, one cannot explore the rela-
tionship between hopping and the total stress relaxation.

The experiments, on the other hand, are successful in
showing the decay of the SAF. However, except a recent
work using single molecule spectroscopy [9], these experi-
ments are macroscopic and do not provide enough infor-
mation of the microscopic motions in the system.

Majumdar [10] had earlier discussed the importance of
local relaxation modes (of wavelength less than the short
range order) in giving rise to nonexponentiality in the
stress relaxation function. This work discussed relaxation
in terms of relaxation within small regions, surfaces, and
also volumes, with progressive lengthening of time scales.
However, in that analysis the basic mechanism of relax-
ation was still assumed to be continuous.

In this Letter, we demonstrate for the first time that, in
the deeply supercooled liquid (where hopping is the only
surviving large amplitude motion), there is a close rela-
tionship between the local stress and the orientational and
translational hopping. The local SAF is anisotropic and is
found to change drastically during the hopping, thus show-
ing that the local stress and the hopping of a particle are
intimately connected. The anisotropy in the local stress
could be the driving force for hopping. As the free en-
ergy of the system can be expressed in terms of the po-
sition dependent stress in a generalized Ginzburg-Landau
formulation [11], the change of the anisotropic stress due
to hopping should be regarded as the driving force for the
transitions of the system between different minima of the
free energy surface. However, not all hoppings are effec-
tive in relaxing the stress.

Our solvent is represented by a binary Lennard-Jones
(LJ) mixture, which has been extensively studied
[1,12–14] and is known to be a good glass former, and
our solute probes are prolate ellipsoids. Pressure is kept
constant by Andersen’s piston method [15] while, in the
case of temperature, a damped oscillator method has been
adopted which keeps temperature constant at each and
every time step [16]. The piston mass involved here is
0.0027�mA�s

4
A� which is regarded as optimum [16,17].

The interaction between two ellipsoids with arbitrary
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orientations is assumed to be given by the Gay-Berne
(GB) potential [18],
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where û1, û2 are the axial vectors of the ellipsoids 1 and
2. r̂ is the vector along the intermolecular vector r �
r2 2 r1, where r1 and r2 denote the centers of mass of el-
lipsoids 1 and 2, respectively. s�r̂, û1, û2� and e�r̂ , û1, û2�
are the orientation-dependent range and strength parame-
ters, respectively. s and e depend on the aspect ratio k.
The minor axis of the ellipsoid is equal to the diameter of
the larger solvent and the major axis is 3 times that of the
minor axis. Finally, the interaction between a sphere and
an ellipsoid is accounted for by a modified GB-LJ poten-
tial given below:
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where E denotes the ellipsoids and i can be A or B. The
expression for s�u�Ei is available [19].

The ellipsoid in the binary mixture system with the
above-mentioned potential is a well-behaved system, and
it can also exhibit the experimentally observed anomalous
viscosity dependence of the orientational correlation time
[19]. Four ellipsoids were placed far from each other
in a binary mixture of 500 particles with a number of
A-type particles, NA � 400, and a number of B-type par-
ticles, NB � 100. The reduced temperature is expressed as
T ��� kBT�eA�, the reduced pressure as P��� Ps

3
A�eAA�,

and the reduced density as r��� rs
3
A�. The time is scaled

by t �
q

�mAs
2
A�eAA�. The time step of the simulation is

0.002t; the system is equilibrated for 1.5 3 105 steps and
the data collection step is 5 3 106. The studies have been
performed at T� � 0.8 and the P� � 6 and 10.

At P� � 6, both hopping and continuous motions ex-
ist in the system, thus the stress relaxation could not be
directly correlated with the hopping. At P� � 10, only
microscopic motion that survives is hopping. In a recent
study, we have reported observation of correlated transla-
tional and orientational hopping [20] at this pressure. Af-
ter extensive simulations, we could find only two different
kinds of motions. The translational hopping was either
associated with correlated hopping of 5–6 nearest neigh-
bors or it exhibited a motion in a ringlike tunnel. While
it is possible that other types of motion such as isolated
hopping can exist, we could not find them. The hopping
rate was found to be 2 3 107 where both types of motions
occurred with almost equal frequency. In the following,
we focus on the stress relaxation and its relation vis-á-vis
hopping at P� � 10 and T� � 0.8. The reduced density
of the system is 1.41.
In Fig. 1, we show two different kinds of spatial
hopping observed in our simulations. Both hoppings
are associated with orientational hopping. In the inset,
we also plot the orientational time correlation functions
(OCF), before, during, and after the hopping. Figure 1(a)
shows the trajectory of the first tagged ellipsoid, and the
inset shows its orientational time correlation function,
�P2���ûi�0�ûi�t�������P2���ûi�0�ûi�0�����, where P2 is the second
order Legendre polynomial. The hopping takes place in
20t and the displacement is 0.5s. Here the ellipsoid
hopping is accompanied by hopping of 5–6 of its nearest
neighbors. The OCF decays only during the period of hop-
ping. In Fig. 1(b), the trajectory of the second tagged
ellipsoid and, in the inset, its orientational time correlation
functions are shown. Note that in this case the displace-
ment of the particle is large (1.1s) and it also takes place
over a very long period of time (50t). Here we find that
the tagged particle is moving in a ringlike tunnel. Al-
though the orientational correlation function decays during
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FIG. 1. (a) The displacement of the first tagged ellipsoid over
1000t. There is a hopping of the ellipsoid around 300t. In the
inset, we plot the orientational correlation function obtained at
different intervals. The solid line denotes the OCF calculated
during hopping and the dotted and the dashed-dot lines denote
the same before and after hopping, respectively. (b) Same as (a)
but for the second tagged ellipsoid. The plots are at P� � 10
and T� � 0.8.



the hopping, its decay is less when compared to that of
the first tagged particle.

The motions in a stringlike and a ringlike tunnel in a
deeply supercooled liquid have been reported earlier by
other authors, although they did not discuss these large
displacements over a long time for the ringlike motion [21].

In the following, we discuss in detail the local stress re-
laxation associated with these two different kinds of hop-
pings. The local stress around the ellipsoid is obtained by
summing over the stress on the ellipsoid and its nearest
neighbors. The stress has six components and the stress
autocorrelation function is given by �sij�0�sij �t��, where
i, j � x,y, z. In the case of only Lennard-Jones fluid,
sij � sji , but for particles interacting via GB and GB-LJ
potentials, this is not so.

Figures 2(a) and 2(b) show the SAF around the first
tagged ellipsoid, before and after the period it is hopping,
respectively. Before the hopping, there is an anisotropy
of the stress. The xy and yx components of the stress
are much larger than the others, and also their correlations
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FIG. 2. (a) The different components of the local stress auto-
correlation (obtained from the sum of the stress of the first ellip-
soid and its nearest neighbors) function obtained before hopping,
between 320t 330t. (b) The same as (a) but the components
of the SAF are obtained after hopping between (340t 350t).
The plots are at P� � 10 and T � � 0.8.
cease to decay. This anisotropy leads to a hopping of the
ellipsoid, mostly in the z direction. During the hopping,
there is a relaxation of the SAF in xy and yx components,
and after hopping all the components relax. Note that the
total stress in all the components are also lower.

Figures 3(a) and 3(b) show the SAF around the second
tagged ellipsoid, before and after the period it is hopping,
respectively. Before the hopping there is an anisotropy of
the stress. The yz and zy components of the stress are
much larger than others, and also their correlations cease
to decay. This leads to the hopping of the ellipsoid, mostly
in the x direction. During and after the hopping there is an
exchange of the stress. After the hopping, although the yz
component of the stress relaxes and also the t � 0 value
of all the components reduces, the SAF in the xz and zx
components ceases to decay. Thus, this kind of motion in
a ringlike tunnel does not lead to the relaxation of all the
components of the stress.
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FIG. 3. (a) The different components of the local stress auto-
correlation (obtained from the sum of the stress of the second
ellipsoid and its nearest neighbors) function obtained before hop-
ping, between 1590t 1630t. (b) is the same as (a) but the
components of the SAF are obtained after the hopping, between
1670t 1710t. The plots are at P� � 10 and T � � 0.8.



The orientational correlation function of the first tagged
particle relaxes more [inset of Fig. 1(a)] compared to that
of the second tagged particle [inset of Fig. 1(b)] when
computed in the respective intervals where they are hop-
ping. From Figs. 2 and 3, we found that the local stress
relaxation takes place when the first ellipsoid is hopping,
whereas when the second ellipsoid is hopping, although
there is an exchange of stress between its components, the
local SAF does not completely relax. There is a direct
connection between the local stress and the orientational
relaxation functions, implying that rotation and viscosity
are coupled even in a localized region.

In order to understand what happens to the surround-
ing of the local region when there is a relaxation of stress
due to hopping, we have studied the stress autocorrelation
function of a bigger region of 2s around the first ellipsoid.
We found there are about 62–67 particles in this region.
Although there is an anisotropy of the components of the
stress in this larger region, this anisotropy cannot be cor-
related with the direction of hopping. Some of the com-
ponents of SAF build up immediately after hopping and
in a later time it relaxes. Similar analysis when done in a
even bigger region shows that it takes longer for the stress
of that region to relax, and also the effect of the hopping
is less.

In conclusion, we demonstrated that the direction of
the hopping of the tagged particle is determined by the
anisotropy in the stress. Anisotropic stress relaxation is
different when there is a many-particle hopping and there
is a motion in a ringlike tunnel. Although there is an
exchange of stress between the components due to the
particle motion, the stress relaxation is less in a ringlike
motion. Interestingly, the effect of hopping is found to
spread over the adjoining region like ripples with the am-
plitude decreasing with increasing distance from the el-
lipsoid. We note that in the case of the second tagged
ellipsoid [Fig. 1(b)], although it translates more, the stress
relaxation during its hopping is less — thus suggesting that
translational motion and viscosity are decoupled even in
a localized region. On the other hand, the orientational
relaxation and also the stress relaxation is more for the
first ellipsoid — thus suggesting that the orientational mo-
tion always remains coupled to viscosity. This is in agree-
ment with the experimental results and, in fact, provides
a microscopic explanation of the results which have been
known for a long time. There can be an apparent connec-
tion between the stress tensor and the momentum circula-
tion. Thus, it is possible that the nondecaying SAF implies
that momentum circulation exists in a deeply supercooled
liquid. Since the anisotropic stress contributes to the free
energy of the system, a change in the anisotropy drives
the system from one free energy minimum to the other.
When the anisotropy in the stress disappears and all the
SAF relaxes, then the system definitely moves to a lower
free energy minimum.
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