42 research outputs found

    Independent validation of the PAM50-based chemo-endocrine score (CES) in hormone receptor-positive HER2-positive breast cancer treated with neoadjuvant anti-HER2-based therapy

    Get PDF
    Purpose: We do not yet have validated biomarkers to predict response and outcome within hormone receptor-positive/HER2-positive (HR+/HER2+) breast cancer. The PAM50-based chemoendocrine score (CES) predicts chemo-endocrine sensitivity in hormone receptor-positive/HER2-negative (HR+/HER2-) breast cancer. Here, we evaluate the relationship of CES with response and survival in HRþ/HER2þ breast cancer. Experimental Design: Intrinsic subtype and clinicopathologic data were obtained from seven studies in which patients were treated with HER2-targeted therapy either with endocrine therapy (ET) or with chemotherapy (CTX). CES was evaluated as a continuous variable and categorically from low to high scores [CES-C (chemo-sensitive), CES-U (uncertain), and CES-E (endocrine-sensitive)]. We first analyzed each dataset individually, and then all combined. Multivariable analyses were used to test CES association with pathologic complete response (pCR) and disease-free survival (DFS). Results: A total of 457 patients were included (112 with ET and 345 with CTX). In the combined cohort, CES-C, CES-U, and CES-E were identified in 60%, 23%, and 17% of the patients, respectively. High CES (i.e., CES-E) was associated with a lower probability of achieving pCR independently of clinical characteristics, therapy, intrinsic subtype, and study (adjusted OR ¼ 0.42; P ¼ 0.016). A total of 295 patients were analyzed for DFS with a median follow-up of 66 months. High CES was also associated with better DFS (adjusted HR, 0.174; P ¼ 0.003) independently of pCR, clinical characteristics and intrinsic subtype. In patients with residual disease, the adjusted DFS HR of CES was 0.160 (P ¼ 0.012). Conclusions: In HER2þ/HRþ breast cancer, CES is useful for predicting chemo-endocrine sensitivity and provides additional prognostication beyond intrinsic subtype and clinicopathologic characteristics

    Obesity and survival in operable breast cancer patients treated with adjuvant anthracyclines and taxanes according to pathological subtypes: a pooled analysis

    Get PDF
    IntroductionObesity is an unfavorable prognostic factor in breast cancer (BC) patients regardless of menopausal status and treatment received. However, the association between obesity and survival outcome by pathological subtype requires further clarification.MethodsWe performed a retrospective analysis including 5,683 operable BC patients enrolled in four randomized clinical trials (GEICAM/9906, GEICAM/9805, GEICAM/2003–02, and BCIRG 001) evaluating anthracyclines and taxanes as adjuvant treatments. Our primary aim was to assess the prognostic effect of body mass index (BMI) on disease recurrence, breast cancer mortality (BCM), and overall mortality (OM). A secondary aim was to detect differences of such prognostic effects by subtype.ResultsMultivariate survival analyses adjusting for age, tumor size, nodal status, menopausal status, surgery type, histological grade, hormone receptor status, human epidermal growth factor receptor 2 (HER2) status, chemotherapy regimen, and under-treatment showed that obese patients (BMI 30.0 to 34.9) had similar prognoses to that of patients with a BMI < 25 (reference group) in terms of recurrence (Hazard Ratio [HR] = 1.08, 95% Confidence Interval [CI] = 0.90 to 1.30), BCM (HR = 1.02, 0.81 to 1.29), and OM (HR = 0.97, 0.78 to 1.19). Patients with severe obesity (BMI ≥ 35) had a significantly increased risk of recurrence (HR = 1.26, 1.00 to 1.59, P = 0.048), BCM (HR = 1.32, 1.00 to 1.74, P = 0.050), and OM (HR = 1.35, 1.06 to 1.71, P = 0.016) compared to our reference group. The prognostic effect of severe obesity did not vary by subtype.ConclusionsSeverely obese patients treated with anthracyclines and taxanes present a worse prognosis regarding recurrence, BCM, and OM than patients with BMI < 25. The magnitude of the harmful effect of BMI on survival-related outcomes was similar across subtypes

    A polymorphism at the 3'-UTR region of the aromatase gene defines a subgroup of postmenopausal breast cancer patients with poor response to neoadjuvant letrozole

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aromatase (<it>CYP19A1</it>) regulates estrogen biosynthesis. Polymorphisms in <it>CYP19A1 </it>have been related to the pathogenesis of breast cancer (BC). Inhibition of aromatase with letrozole constitutes the best option for treating estrogen-dependent BC in postmenopausal women. We evaluate a series of polymorphisms of <it>CYP19A1 </it>and their effect on response to neoadjuvant letrozole in early BC.</p> <p>Methods</p> <p>We analyzed 95 consecutive postmenopausal women with stage II-III ER/PgR [+] BC treated with neoadjuvant letrozole. Response to treatment was measured by radiology at 4<sup>th </sup>month by World Health Organization (WHO) criteria. Three polymorphisms of <it>CYP19A1</it>, one in exon 7 (rs700519) and two in the 3'-UTR region (rs10046 and rs4646) were evaluated on DNA obtained from peripheral blood.</p> <p>Results</p> <p>Thirty-five women (36.8%) achieved a radiological response to letrozole. The histopathological and immunohistochemical parameters, including hormonal receptor status, were not associated with the response to letrozole. Only the genetic variants (AC/AA) of the rs4646 polymorphism were associated with poor response to letrozole (p = 0.03). Eighteen patients (18.9%) reported a progression of the disease. Those patients carrying the genetic variants (AC/AA) of rs4646 presented a lower progression-free survival than the patients homozygous for the reference variant (p = 0.0686). This effect was especially significant in the group of elderly patients not operated after letrozole induction (p = 0.009).</p> <p>Conclusions</p> <p>Our study reveals that the rs4646 polymorphism identifies a subgroup of stage II-III ER/PgR [+] BC patients with poor response to neoadjuvant letrozole and poor prognosis. Testing for the rs4646 polymorphism could be a useful tool in order to orientate the treatment in elderly BC patients.</p

    Planck pre-launch status : The Planck mission

    Get PDF
    Peer reviewe

    Planck early results. II. The thermal performance of Planck

    Get PDF
    The performance of the Planck instruments in space is enabled by their low operating temperatures, 20 K for LFI and 0.1 K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency coverage led to two detector technologies with widely different temperature and cooling needs. Active coolers could satisfy these needs; a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by three V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (<20 K), a 4He Joule-Thomson cooler (4.7 K), and a 3He-4He dilution cooler (1.4 K and 0.1 K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The HFI bolometer plate reached 93 mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, and operates at a mean temperature of 384 K. At the other end of the spacecraft, the telescope baffle operates at 42.3 K and the telescope primary mirror operates at 35.9 K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data

    Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation

    Get PDF
    WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described
    corecore