155 research outputs found

    Tectonic and climatic controls on the Chuquibamba landslide (western Andes, southern Peru)

    Get PDF
    The contribution of landslides to the Quaternary evolution of relief is poorly documented in arid contexts. In southern Peru and northern Chile, several massive landslides disrupt the arid western Andean front. The Chuquibamba landslide, located in southern Peru, belongs to this set of large landslides. In this area, the Incapuquio fault system captures the intermittent drainage network and localizes rotational landslides. Seismic activity is significant in this region with recurrent Mw9 subduction earthquakes; however, none of the latest seismic events have triggered a major landslide. New terrestrial cosmogenic dating of the Chuquibamba landslide provides evidence that the last major gravitational mobilization of these rotational landslide deposits occurred at ~ 102 ka, during the Ouki wet climatic event identified on the Altiplano between 120 and 98 ka. Our results suggest that wet events in the arid and fractured context of the Andean forearc induced these giant debris flows. Finally, our study highlights the role of tectonics and climate on (i) the localization of large Andean landslides in the Western Cordillera and on (ii) the long-term mass transfer to the trench along the arid Andean front

    Variability in fire frequency and forest composition in Canada's Southeastern Boreal Forest: A challenge for sustainable forest management

    Get PDF
    Because some consequences of fire resemble the effects of industrial forest harvesting, forest management is often considered as a disturbance having effects similar to those of natural disturbances. Although the analogy between forest management and fire disturbance in boreal ecosystems has some merit, it is important to recognize that it has limitations. First, normal forest rotations truncate the natural forest stand age distribution and eliminate over-mature forests from the landscape. Second, in the boreal mixedwoods, natural forest dynamics following fire may involve a gradual replacement of stands of intolerant broadleaf species by mixedwood and then softwood stands, whereas current silvicultural practices promote successive rotations of similarly composed stands. Third, the large fluctuations observed in fire frequency during the Holocene limit the use of a single fire cycle to characterize natural fire regimes. Short fire cycles generally described for boreal ecosystems do not appear to be universal; rather, shifts between short and long fire cycles have been observed. These shifts imply important changes in forest composition at the landscape and regional levels. All of these factors create a natural variability in forest composition that should be maintained by forest managers concerned with the conservation of biodiversity. One avenue is to develop silvicultural techniques that maintain a spectrum of forest compositions over the landscape

    Paleofire reconstruction based on an ensemble-member strategy applied to sedimentary charcoal

    Get PDF
    Paleofire events obtained from the statistical treatment of sedimentary charcoal records rely on a number of assumptions and user's choices, increasing the uncertainty of reconstructio\ns. Among the assumptions made when analyzing charcoal series is the choice of a filtering method for raw Charcoal Accumulation Rate (CHARraw). As there is no ultimate CHAR raw filtering method, we propose an ensemble-member approach to reconstruct fire events. We modified the commonly used procedure by including a routine replicating the analysis of a charcoal record using custom smoothing parameters. Dates of robust fire events, uncertainties in fire-return intervals and fire frequencies are derived from members' distributions. An application of the method is used to quantify uncertainties due to data treatment in two CHARraw sequences from two different biomes, subalpine and boreal

    The climate, the fuel and the land use: long-term regional variability of biomass burning in boreal forests

    Get PDF
    The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses: land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type. BB was reconstructed by means of 88 sedimentary charcoal records divided into six different site clusters. A statistical approach was used to explore the relative contribution of (1) pollen-based mean July/summer temperature and mean annual precipitation reconstructions, (2) an independent model-based scenario of past land use (LU), and (3) pollen-based reconstructions of plant functional types (PFTs) on BB. Our hypotheses were tested with: (1) a west -east northern boreal sector with changing climatic conditions and a homogeneous vegetation, and (2) a north -south European boreal sector characterized by gradual variation in both climate and vegetation composition

    Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis)

    Get PDF
    We investigated the variability of the climate-growth relationship of Aleppo pine across its distribution range in the Mediterranean Basin. We constructed a network of tree-ring index chronologies from 63 sites across the region. Correlation function analysis identified the relationships of tree-ring index to climate factors for each site. We also estimated the dominant climatic gradients of the region using principal component analysis of monthly, seasonal, and annual mean temperature and total precipitation from 1,068 climatic gridpoints. Variation in ring width index was primarily related to precipitation and secondarily to temperature. However, we found that the dendroclimatic relationship depended on the position of the site along the climatic gradient. In the southern part of the distribution range, where temperature was generally higher and precipitation lower than the regional average, reduced growth was also associated with warm and dry conditions. In the northern part, where the average temperature was lower and the precipitation more abundant than the regional average, reduced growth was associated with cool conditions. Thus, our study highlights the substantial plasticity of Aleppo pine in response to different climatic conditions. These results do not resolve the source of response variability as being due to either genetic variation in provenance, to phenotypic plasticity, or a combination of factors. However, as current growth responses to inter-annual climate variability vary spatially across existing climate gradients, future climate-growth relationships will also likely be determined by differential adaptation and/or acclimation responses to spatial climatic variation. The contribution of local adaptation and/or phenotypic plasticity across populations to the persistence of species under global warming could be decisive for prediction of climate change impacts across populations. In this sense, a more complex forest dynamics modeling approach that includes the contribution of genetic variation and phenotypic plasticity can improve the reliability of the ecological inferences derived from the climate-growth relationships.This work was partially supported by Spanish Ministry of Education and Science co-funded by FEDER program (CGL2012-31668), the European Union and the National Ministry of Education and Religion of Greece (EPEAEK- Environment – Archimedes), the Slovenian Research Agency (program P4-0015), and the USDA Forest Service. The cooperation among international partners was supported by the COST Action FP1106, STREeSS

    Drivers of Holocene palsa distribution in North America

    Get PDF
    Palsas and peat plateaus are climatically sensitive landforms in permafrost peatlands. Climate envelope models have previously related palsa/peat plateau distributions in Europe to modern climate, but similar bioclimatic modelling has not been attempted for North America. Recent climate change has rendered many palsas/peat plateaus in this region, and their valuable carbon stores, vulnerable. We fitted a binary logistic regression model to predict palsa/peat plateau presence for North America by relating the distribution of 352 extant landforms to gridded modern climate data. Our model accurately classified 85.3% of grid cells that contain observed palsas/peat plateaus and 77.1% of grid cells without observed palsas/peat plateaus. The model indicates that modern North American palsas/peat plateaus are supported by cold, dry climates with large seasonal temperature ranges and mild growing seasons. We used palaeoclimate simulations from a general circulation model to simulate Holocene distributions of palsas/peat plateaus at 500-year intervals. We constrained these outputs with timings of peat initiation, deglaciation, and postglacial drainage across the continent. Our palaeoclimate simulations indicate that this climate envelope remained stationary in western North America throughout the Holocene, but further east it migrated northwards during 11.5–6.0 ka BP. However, palsa extents in eastern North America were restricted from following this moving climate envelope by late deglaciation, drainage and peat initiation. We validated our Holocene simulations against available palaeoecological records and whilst they agree that permafrost peatlands aggraded earliest in western North America, our simulations contest previous suggestions that late permafrost aggradation in central Canada was climatically-driven

    Negative responses of highland pines to anthropogenic activities in inland Spain: a palaeoecological perspective

    Get PDF
    Palaeoecological evidence indicates that highland pines were dominant in extensive areas of the mountains of Central and Northern Iberia during the first half of the Holocene. However, following several millennia of anthropogenic pressure, their natural ranges are now severely reduced. Although pines have been frequently viewed as first-stage successional species responding positively to human disturbance, some recent palaeobotanical work has proposed fire disturbance and human deforestation as the main drivers of this vegetation turnover. To assess the strength of the evidence for this hypothesis and to identify other possible explanations for this scenario, we review the available information on past vegetation change in the mountains of northern inland Iberia. We have chosen data from several sites that offer good chronological control, including palynological records with microscopic charcoal data and sites with plant macro- and megafossil occurrence. We conclude that although the available long-term data are still fragmentary and that new methods are needed for a better understanding of the ecological history of Iberia, fire events and human activities (probably modulated by climate) have triggered the pine demise at different locations and different temporal scales. In addition, all palaeoxylological, palynological and charcoal results obtained so far are fully compatible with a rapid human-induced ecological change that could have caused a range contraction of highland pines in western Iberia

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced
    corecore