190 research outputs found
Ontogeny of the digestive enzyme activity of the Amazonian pimelodid catfish Pseudoplatystoma punctifer (Castelnau, 1855)
The aim of the study was to evaluate the functional ontogeny of the digestive system of Pseudoplatystoma punctifer through the analysis of the activity of the main intestinal (alkaline phosphatase, aminopeptidase N, maltase and leucine-alanine peptidase), pancreatic (trypsin, chymotrypsin, total alkaline proteases, bile-salt activated lipase and amylase) and gastric (pepsin) enzymes. Larvae were raised in triplicate in a recirculation system from 4 to 27 days post fertilization (dpf) at an initial density of 90 larvae L−1, 27.8 ± 0.7 °C and 0 L: 24D photoperiod. Larvae were fed from 4 to 17 dpf with Artemia nauplii and weaned onto an experimentally formulated feed (crude protein content ~ 45%; crude fat content ~ 10%; crude carbohydrate ~ 8%) within 3 days, then continued with the same diet until the end of the trial. P. punctifer showed an exponential growth pattern with two different growth rates: a slower one from hatching to 12 dpf followed by a faster one from 12 to 27 dpf. The specific and total activities of the pancreatic and intestinal enzymes were detected from hatching. The digestive system was functional at 12 dpf, indicating the transition from the larval to the juvenile stage (alkaline to acid digestion). Therefore individuals could be weaned from that day onwards. The variations observed in the enzymatic activity from 17 dpf reflected the adaptation of the enzymatic machinery to the new diet supplied. P. punctifer larvae showed a fast digestive system development with an enzymatic profile typical of a tropical and carnivorous species.info:eu-repo/semantics/acceptedVersio
A Simplified Method to Distinguish Farmed (Salmo salar) from Wild Salmon: Fatty Acid Ratios Versus Astaxanthin Chiral Isomers
Mislabeling of farmed and wild salmon sold in markets has been reported. Since the fatty acid content of fish may influence human health and thus consumer behavior, a simplified method to identify wild and farmed salmon is necessary. Several studies have demonstrated differences in lipid profiles between farmed and wild salmon but no data exists validating these differences with government-approved methods to accurately identify the origin of these fish. Current methods are both expensive and complicated, using highly specialized equipment not commonly available. Therefore, we developed a testing protocol using gas chromatography (GC), to determine the origin of salmon using fatty acid profiles. We also compared the GC method with the currently approved FDA (United States Food and Drug Administration) technique that uses analysis of carotenoid optical isomers and found 100% agreement. Statistical validation (n = 30) was obtained showing elevated 18:2n-6 (z = 4.56; P = 0.0001) and decreased 20:1n-9 (z = 1.79; P = 0.07) in farmed samples. The method is suitable for wide adaptation because fatty acid methyl ester analysis is a well-established procedure in labs that conduct analysis of lipid composition and food constituents. GC analysis for determining the origin of North American salmon compared favorably with the astaxanthin isomer technique used by the FDA and showed that the fatty acid 18:2n-6 was the key indicator associated with the origin of these salmon
Developmentally regulated GTP binding protein 1 (DRG1) controls microtubule dynamics
The mitotic spindle, essential for segregating the sister chromatids into the two evolving daughter cells, is composed of highly dynamic cytoskeletal filaments, the microtubules. The dynamics of microtubules are regulated by numerous microtubule associated proteins. We identify here Developmentally regulated GTP binding protein 1 (DRG1) as a microtubule binding protein with diverse microtubule-associated functions. In vitro, DRG1 can diffuse on microtubules, promote their polymerization, drive microtubule formation into bundles, and stabilize microtubules. HeLa cells with reduced DRG1 levels show delayed progression from prophase to anaphase because spindle formation is slowed down. To perform its microtubule-associated functions, DRG1, although being a GTPase, does not require GTP hydrolysis. However, all domains are required as truncated versions show none of the mentioned activities besides microtubule binding
Microtubule sliding activity of a kinesin-8 promotes spindle assembly and spindle length control
Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by cross-linking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report for the first time on an anti-parallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule destabilizing activity. In conjunction with kinesin-5/Cin8, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a “slide-disassemble” model where Kip3’s sliding and destabilizing activity balance during pre-anaphase. This facilitates normal spindle assembly. However, Kip3’s destabilizing activity dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly
Blast phase myeloproliferative neoplasm: Mayo-AGIMM study of 410 patients from two separate cohorts
A total of 410 patients with blast phase myeloproliferative neoplasm (MPN-BP) were retrospectively reviewed: 248 from the
Mayo Clinic and 162 from Italy. Median survival was 3.6 months, with no improvement over the last 15 years. Multivariable
analysis performed on the Mayo cohort identified high risk karyotype, platelet count < 100 × 109
/L, age > 65 years and
transfusion need as independent risk factors for survival. Also in the Mayo cohort, intensive chemotherapy resulted in complete
remission (CR) or CR with incomplete count recovery (CRi) rates of 35 and 24%, respectively; treatment-specified 3-year/5-year
survival rates were 32/10% for patients receiving allogeneic stem cell transplant (AlloSCT) (n = 24), 19/13% for patients
achieving CR/CRi but were not transplanted (n = 24), and 1/1% in the absence of both AlloSCT and CR/CRi (n = 200) (p <
0.01). The survival impact of AlloSCT (HR 0.2, 95% CI 0.1–0.3), CR/CRi without AlloSCT (HR 0.3, 95% CI 0.2–0.5), high risk
karyotype (HR 1.6, 95% CI 1.1–2.2) and platelet count < 100 × 109
/L (HR 1.6, 95% CI 1.1–2.2) were confirmed to be interindependent. Similar observations were made in the Italian cohort. The current study identifies the setting for improved short-term
survival in MPN-BP, but also highlights the limited value of current therapy, including AlloSCT, in securing long-term survival
Avanços recentes em nutrição de larvas de peixes
Os requisitos nutricionais de larvas de peixes são ainda mal compreendidos, o que leva a altas mortalidades
e problemas de qualidade no seu cultivo. Este trabalho pretende fazer uma revisão de novas metodologias de investigação, tais
como estudos com marcadores, genómica populacional, programação nutricional, génomica e proteómica funcionais, e
fornecer ainda alguns exemplos das utilizações presentes e perspectivas futuras em estudos de nutrição de larvas de peixes
Swim-Training Changes the Spatio-Temporal Dynamics of Skeletogenesis in Zebrafish Larvae (Danio rerio)
Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis
Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival.
In chemotherapy-treated breast cancer, wild-type p53 preferentially induces senescence over apoptosis, resulting in a persisting cell population constituting residual disease that drives relapse and poor patient survival via the senescence-associated secretory phenotype. Understanding the properties of tumor cells that allow survival after chemotherapy treatment is paramount. Using time-lapse and confocal microscopy to observe interactions of cells in treated tumors, we show here that chemotherapy-induced senescent cells frequently engulf both neighboring senescent or nonsenescent tumor cells at a remarkable frequency. Engulfed cells are processed through the lysosome and broken down, and cells that have engulfed others obtain a survival advantage. Gene expression analysis showed a marked up-regulation of conserved macrophage-like program of engulfment in chemotherapy-induced senescent cell lines and tumors. Our data suggest compelling explanations for how senescent cells persist in dormancy, how they manage the metabolically expensive process of cytokine production that drives relapse in those tumors that respond the worst, and a function for their expanded lysosomal compartment
- …