136 research outputs found

    DNA Clasping by Mycobacterial HU: The C-Terminal Region of HupB Mediates Increased Specificity of DNA Binding

    Get PDF
    BACKGROUND: HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb) has only one subunit of HU coded by ORF Rv2986c (hupB gene). One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupB(Mtb) bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function. METHODOLOGY/PRINCIPAL FINDINGS: With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupB(Mtb)) and another which expresses only the N terminal region (first 95 amino acid) of hupB (HupB(MtbN)). Gel retardation assays revealed that HupB(MtbN) is almost like E. coli HU (heat stable nucleoid protein) in terms of its DNA binding, with a binding constant (K(d)) for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUalphaalpha and HUalphabeta forms. However CTR (C-terminal Region) of HupB(Mtb) imparts greater specificity in DNA binding. HupB(Mtb) protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton's reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb. CONCLUSIONS/SIGNIFICANCE: These data thus point that HupB(Mtb) may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role

    Mechanisms of organelle division and inheritance and their implications regarding the origin of eukaryotic cells

    Get PDF
    Mitochondria and plastids have their own DNAs and are regarded as descendants of endosymbiotic prokaryotes. Organellar DNAs are not naked in vivo but are associated with basic proteins to form DNA-protein complexes (called organelle nuclei). The concept of organelle nuclei provides a new approach to explain the origin, division, and inheritance of organelles. Organelles divide using organelle division rings (machineries) after organelle-nuclear division. Organelle division machineries are a chimera of the FtsZ (filamentous temperature sensitive Z) ring of bacterial origin and the eukaryotic mechanochemical dynamin ring. Thus, organelle division machineries contain a key to solve the origin of organelles (eukaryotes). The maternal inheritance of organelles developed during sexual reproduction and it is also probably intimately related to the origin of organelles. The aims of this review are to describe the strategies used to reveal the dynamics of organelle division machineries, and the significance of the division machineries and maternal inheritance in the origin and evolution of eukaryotes

    Comparative genomic analysis of Vibrio parahaemolyticus: serotype conversion and virulence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Vibrio parahaemolyticus </it>is a common cause of foodborne disease. Beginning in 1996, a more virulent strain having serotype O3:K6 caused major outbreaks in India and other parts of the world, resulting in the emergence of a pandemic. Other serovariants of this strain emerged during its dissemination and together with the original O3:K6 were termed strains of the pandemic clone. Two genomes, one of this virulent strain and one pre-pandemic strain have been sequenced. We sequenced four additional genomes of <it>V. parahaemolyticus </it>in this study that were isolated from different geographical regions and time points. Comparative genomic analyses of six strains of <it>V. parahaemolyticus </it>isolated from Asia and Peru were performed in order to advance knowledge concerning the evolution of <it>V. parahaemolyticus</it>; specifically, the genetic changes contributing to serotype conversion and virulence. Two pre-pandemic strains and three pandemic strains, isolated from different geographical regions, were serotype O3:K6 and either toxin profiles (<it>tdh+</it>, <it>trh</it>-) or (<it>tdh-</it>, <it>trh</it>+). The sixth pandemic strain sequenced in this study was serotype O4:K68.</p> <p>Results</p> <p>Genomic analyses revealed that the <it>trh</it>+ and <it>tdh</it>+ strains had different types of pathogenicity islands and mobile elements as well as major structural differences between the <it>tdh </it>pathogenicity islands of the pre-pandemic and pandemic strains. In addition, the results of single nucleotide polymorphism (SNP) analysis showed that 94% of the SNPs between O3:K6 and O4:K68 pandemic isolates were within a 141 kb region surrounding the O- and K-antigen-encoding gene clusters. The "core" genes of <it>V. parahaemolyticus </it>were also compared to those of <it>V. cholerae </it>and <it>V. vulnificus</it>, in order to delineate differences between these three pathogenic species. Approximately one-half (49-59%) of each species' core genes were conserved in all three species, and 14-24% of the core genes were species-specific and in different functional categories.</p> <p>Conclusions</p> <p>Our data support the idea that the pandemic strains are closely related and that recent South American outbreaks of foodborne disease caused by <it>V. parahaemolyticus </it>are closely linked to outbreaks in India. Serotype conversion from O3:K6 to O4:K68 was likely due to a recombination event involving a region much larger than the O-antigen- and K-antigen-encoding gene clusters. Major differences between pathogenicity islands and mobile elements are also likely driving the evolution of <it>V. parahaemolyticus</it>. In addition, our analyses categorized genes that may be useful in differentiating pathogenic Vibrios at the species level.</p

    The over-representation of binary DNA tracts in seven sequenced chromosomes

    Get PDF
    BACKGROUND: DNA tracts composed of only two bases are possible in six combinations: A+G (purines, R), C+T (pyrimidines, Y), G+T (Keto, K), A+C (Imino, M), A+T (Weak, W) and G+C (Strong, S). It is long known that all-pyrimidine tracts, complemented by all-purines tracts ("R.Y tracts"), are excessively present in analyzed DNA. We have previously shown that R.Y tracts are in vast excess in yeast promoters, and brought evidence for their role in gene regulation. Here we report the systematic mapping of all six binary combinations on the level of complete sequenced chromosomes, as well as in their different subregions. RESULTS: DNA tracts composed of the above binary base combinations have been mapped in seven sequenced chromosomes: Human chromosomes 21 and 22 (the major contigs); Drosophila melanogaster chr. 2R; Caenorhabditis elegans chr. I; Arabidopsis thaliana chr. II; Saccharomyces cerevisiae chr. IV and M. jannaschii. A huge over-representation, reaching million-folds, has been found for very long tracts of all binary motifs except S, in each of the seven organisms. Long R.Y tracts are the most excessive, except in D. melanogaster, where the K.M motif predominates. S (G, C rich) tracts are in excess mainly in CpG islands; the W motif predominates in bacteria. Many excessively long W tracts are nevertheless found also in the archeon and in the eukaryotes. The survey of complete chromosomes enables us, for the first time, to map systematically the intergenic regions. In human and other chromosomes we find the highest over-representation of the binary DNA tracts in the intergenic regions. These over-representations are only partly explainable by the presence of interspersed elements. CONCLUSIONS: The over-representation of long DNA tracts composed of five of the above motifs is the largest deviation from randomness so far established for DNA, and this in a wide range of eukaryotic and archeal chromosomes. A propensity for ready DNA unwinding is proposed as the functional role, explaining the evolutionary conservation of the huge excesses observed

    Proteolysis-Dependent Remodeling of the Tubulin Homolog FtsZ at the Division Septum in \u3ci\u3eEscherichia coli\u3c/i\u3e

    Get PDF
    During bacterial cell division a dynamic protein structure called the Z-ring assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component ATP-dependent protease ClpXP. Two regions of FtsZ, located outside of the polymerization domain in the unstructured linker and at the C-terminus, are important for specific recognition and degradation by ClpXP. We engineered a synthetic substrate containing green fluorescent protein (Gfp) fused to an extended FtsZ C-terminal tail (residues 317–383), including the unstructured linker and the C-terminal conserved region, but not the polymerization domain, and showed that it is sufficient to target a non-native substrate for degradation in vitro. To determine if FtsZ degradation regulates Z-ring assembly during division, we expressed a full length Gfp-FtsZ fusion protein in wild type and clp deficient strains and monitored fluorescent Z-rings. In cells deleted for clpX or clpP, or cells expressing protease-defective mutant protein ClpP(S97A), Z-rings appear normal; however, after photobleaching a region of the Z-ring, fluorescence recovers ~70% more slowly in cells without functional ClpXP than in wild type cells. Gfp-FtsZ(R379E), which is defective for degradation by ClpXP, also assembles into Z-rings that recover fluorescence ~2-fold more slowly than Z-rings containing Gfp-FtsZ. In vitro, ClpXP cooperatively degrades and disassembles FtsZ polymers. These results demonstrate that ClpXP is a regulator of Z-ring dynamics and that the regulation is proteolysis-dependent. Our results further show that FtsZ-interacting proteins in E. coli fine-tune Z-ring dynamics

    Novel Role of Phosphorylation-Dependent Interaction between FtsZ and FipA in Mycobacterial Cell Division

    Get PDF
    The bacterial divisome is a multiprotein complex. Specific protein-protein interactions specify whether cell division occurs optimally, or whether division is arrested. Little is known about these protein-protein interactions and their regulation in mycobacteria. We have investigated the interrelationship between the products of the Mycobacterium tuberculosis gene cluster Rv0014c-Rv0019c, namely PknA (encoded by Rv0014c) and FtsZ-interacting protein A, FipA (encoded by Rv0019c) and the products of the division cell wall (dcw) cluster, namely FtsZ and FtsQ. M. smegmatis strains depleted in components of the two gene clusters have been complemented with orthologs of the respective genes of M. tuberculosis. Here we identify FipA as an interacting partner of FtsZ and FtsQ and establish that PknA-dependent phosphorylation of FipA on T77 and FtsZ on T343 is required for cell division under oxidative stress. A fipA knockout strain of M. smegmatis is less capable of withstanding oxidative stress than the wild type and showed elongation of cells due to a defect in septum formation. Localization of FtsQ, FtsZ and FipA at mid-cell was also compromised. Growth and survival defects under oxidative stress could be functionally complemented by fipA of M. tuberculosis but not its T77A mutant. Merodiploid strains of M. smegmatis expressing the FtsZ(T343A) showed inhibition of FtsZ-FipA interaction and Z ring formation under oxidative stress. Knockdown of FipA led to elongation of M. tuberculosis cells grown in macrophages and reduced intramacrophage growth. These data reveal a novel role of phosphorylation-dependent protein-protein interactions involving FipA, in the sustenance of mycobacterial cell division under oxidative stress

    Proteome Analyses of Cellular Proteins in Methicillin-Resistant Staphylococcus aureus Treated with Rhodomyrtone, a Novel Antibiotic Candidate

    Get PDF
    The ethanolic extract from Rhodomyrtus tomentosa leaf exhibited good antibacterial activities against both methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 29213. Its minimal inhibitory concentration (MIC) values ranged from 31.25–62.5 Β΅g/ml, and the minimal bactericidal concentration (MBC) was 250 Β΅g/ml. Rhodomyrtone, an acylphloroglucinol derivative, was 62.5–125 times more potent at inhibiting the bacteria than the ethanolic extract, the MIC and MBC values were 0.5 Β΅g/ml and 2 Β΅g/ml, respectively. To provide insights into antibacterial mechanisms involved, the effects of rhodomyrtone on cellular protein expression of MRSA have been investigated using proteomic approaches. Proteome analyses revealed that rhodomyrtone at subinhibitory concentration (0.174 Β΅g/ml) affected the expression of several major functional classes of whole cell proteins in MRSA. The identified proteins involve in cell wall biosynthesis and cell division, protein degradation, stress response and oxidative stress, cell surface antigen and virulence factor, and various metabolic pathways such as amino acid, carbohydrate, energy, lipid, and nucleotide metabolism. Transmission electron micrographs confirmed the effects of rhodomyrtone on morphological and ultrastructural alterations in the treated bacterial cells. Biological processes in cell wall biosynthesis and cell division were interrupted. Prominent changes including alterations in cell wall, abnormal septum formation, cellular disintegration, and cell lysis were observed. Unusual size and shape of staphylococcal cells were obviously noted in the treated MRSA. These pioneer findings on proteomic profiling and phenotypic features of rhodomyrtone-treated MRSA may resolve its antimicrobial mechanisms which could lead to the development of a new effective regimen for the treatment of MRSA infections

    Cell Size and the Initiation of DNA Replication in Bacteria

    Get PDF
    In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ∼30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA

    The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks

    Get PDF
    Type II DNA topoisomerases (topos) catalyse changes in DNA topology by passing one double-stranded DNA segment through another. This reaction is essential to processes such as replication and transcription, but carries with it the inherent danger of permanent double-strand break (DSB) formation. All type II topos hydrolyse ATP during their reactions; however, only DNA gyrase is able to harness the free energy of hydrolysis to drive DNA supercoiling, an energetically unfavourable process. A long-standing puzzle has been to understand why the majority of type II enzymes consume ATP to support reactions that do not require a net energy input. While certain type II topos are known to β€˜simplify’ distributions of DNA topoisomers below thermodynamic equilibrium levels, the energy required for this process is very low, suggesting that this behaviour is not the principal reason for ATP hydrolysis. Instead, we propose that the energy of ATP hydrolysis is needed to control the separation of protein–protein interfaces and prevent the accidental formation of potentially mutagenic or cytotoxic DSBs. This interpretation has parallels with the actions of a variety of molecular machines that catalyse the conformational rearrangement of biological macromolecules

    Complete Genome Sequence of the N2-Fixing Broad Host Range Endophyte Klebsiella pneumoniae 342 and Virulence Predictions Verified in Mice

    Get PDF
    We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels
    • …
    corecore