22 research outputs found

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 3 and reports on twenty-three research projects.Joint Services Electronics Program Contract DAAL03-92-C-0001U.S. Air Force - Office of Scientific Research Contract F49620-91-C-0091Charles S. Draper Laboratories Contract DL-H-441629MIT Lincoln LaboratoryNational Science Foundation Grant ECS 90-12787Fujitsu LaboratoriesU.S. Navy - Office of Naval Research Grant N00014-92-J-1302National Center for Integrated PhotonicsNational Center for Integrated Photonics TechnologyNational Science Foundation Grant EET 88-15834Joint Services Electronics Program Contract DAAL03-91-C-0001National Science Foundation Fellowship ECS-85-52701U.S. Navy - Office of Naval Research (MGH) Contract N00014-91-C-0084U.S. Navy - Office of Naval Research Grant N00014-91-J-1956National Institutes of Health Grant NIH-5-RO1-GM35459-08Bose CorporationLawrence Livermore National Laboratories Subcontract B160530U.S. Department of Energy Grant DE-FG02-89-ER14012Rockwell International CorporationSpace Exploration AssociatesFuture Energy Applied Technology, Inc

    The BRCA2 c.68-7T > A variant is not pathogenic: A model for clinical calibration of spliceogenicity.

    Get PDF
    Although the spliceogenic nature of the BRCA2 c.68-7T>A variant has been demonstrated, its association with cancer risk remains ontroversial. In this study, we accurately quantified by real-time PCR and digital PCR the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636 individuals. Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon 3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an exclusion rate for the c.68-7T>A allele of approximately 20%. The posterior probability of pathogenicity was 7.44 x 10-115. There was neither evidence for increased risk of breast cancer (OR 1.03; 95% CI 0.86-1.24), nor for a deleterious effect of the variant when co-occurring with pathogenic variants. Our data provide for the first time robust evidence of the non-pathogenicity of the BRCA2 c.68-7T>A. Genetic and quantitative transcript analyses together inform the threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal cell function. These findings might be exploited to assess the relevance for cancer risk of other BRCA2 spliceogenic variants

    Refined histopathological predictors of BRCA1 and BRCA2 mutation status: A large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia

    Get PDF
    Introduction: The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical modeling. Methods: Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565 BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the

    Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.

    Get PDF
    We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.352

    Significant benefits of AIP testing and clinical screening in familial isolated and young-onset pituitary tumors

    Get PDF
    Context Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are responsible for a subset of familial isolated pituitary adenoma (FIPA) cases and sporadic pituitary neuroendocrine tumors (PitNETs). Objective To compare prospectively diagnosed AIP mutation-positive (AIPmut) PitNET patients with clinically presenting patients and to compare the clinical characteristics of AIPmut and AIPneg PitNET patients. Design 12-year prospective, observational study. Participants & Setting We studied probands and family members of FIPA kindreds and sporadic patients with disease onset ≤18 years or macroadenomas with onset ≤30 years (n = 1477). This was a collaborative study conducted at referral centers for pituitary diseases. Interventions & Outcome AIP testing and clinical screening for pituitary disease. Comparison of characteristics of prospectively diagnosed (n = 22) vs clinically presenting AIPmut PitNET patients (n = 145), and AIPmut (n = 167) vs AIPneg PitNET patients (n = 1310). Results Prospectively diagnosed AIPmut PitNET patients had smaller lesions with less suprasellar extension or cavernous sinus invasion and required fewer treatments with fewer operations and no radiotherapy compared with clinically presenting cases; there were fewer cases with active disease and hypopituitarism at last follow-up. When comparing AIPmut and AIPneg cases, AIPmut patients were more often males, younger, more often had GH excess, pituitary apoplexy, suprasellar extension, and more patients required multimodal therapy, including radiotherapy. AIPmut patients (n = 136) with GH excess were taller than AIPneg counterparts (n = 650). Conclusions Prospectively diagnosed AIPmut patients show better outcomes than clinically presenting cases, demonstrating the benefits of genetic and clinical screening. AIP-related pituitary disease has a wide spectrum ranging from aggressively growing lesions to stable or indolent disease course

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Refined histopathological predictors of BRCA1 and BRCA2 mutation status : a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia

    Get PDF
    Abstract Introduction The distribution of histopathological features of invasive breast tumors in BRCA1 or BRCA2 germline mutation carriers differs from that of individuals with no known mutation. Histopathological features thus have utility for mutation prediction, including statistical modeling to assess pathogenicity of BRCA1 or BRCA2 variants of uncertain clinical significance. We analyzed large pathology datasets accrued by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC) to reassess histopathological predictors of BRCA1 and BRCA2 mutation status, and provide robust likelihood ratio (LR) estimates for statistical modeling. Methods Selection criteria for study/center inclusion were estrogen receptor (ER) status or grade data available for invasive breast cancer diagnosed younger than 70 years. The dataset included 4,477 BRCA1 mutation carriers, 2,565 BRCA2 mutation carriers, and 47,565 BCAC breast cancer cases. Country-stratified estimates of the likelihood of mutation status by histopathological markers were derived using a Mantel-Haenszel approach. Results ER-positive phenotype negatively predicted BRCA1 mutation status, irrespective of grade (LRs from 0.08 to 0.90). ER-negative grade 3 histopathology was more predictive of positive BRCA1 mutation status in women 50 years or older (LR = 4.13 (3.70 to 4.62)) versus younger than 50 years (LR = 3.16 (2.96 to 3.37)). For BRCA2, ER-positive grade 3 phenotype modestly predicted positive mutation status irrespective of age (LR = 1.7-fold), whereas ER-negative grade 3 features modestly predicted positive mutation status at 50 years or older (LR = 1.54 (1.27 to 1.88)). Triple-negative tumor status was highly predictive of BRCA1 mutation status for women younger than 50 years (LR = 3.73 (3.43 to 4.05)) and 50 years or older (LR = 4.41 (3.86 to 5.04)), and modestly predictive of positive BRCA2 mutation status in women 50 years or older (LR = 1.79 (1.42 to 2.24)). Conclusions These results refine likelihood-ratio estimates for predicting BRCA1 and BRCA2 mutation status by using commonly measured histopathological features. Age at diagnosis is an important variable for most analyses, and grade is more informative than ER status for BRCA2 mutation carrier prediction. The estimates will improve BRCA1 and BRCA2 variant classification and inform patient mutation testing and clinical management

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Abstract: Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers
    corecore