336 research outputs found
Recommended from our members
Durable clinical response to the multidisciplinary management of neurosurgery, radiation and chemoimmunotherapy in a patient with PD-L1/PD-L2/JAK2 (PDJ)-amplified, refractory triple-negative breast cancer.
Patients with refractory metastatic triple-negative breast cancer (mTNBC) and symptomatic brain metastases have poor prognosis and are challenging to treat. The addition of an programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitor (pembrolizumab or atezolizumab) to first line chemotherapy has prolonged survivals in mTNBC patients with PD-L1-positive tumor and/or tumor-infiltrating immune cells. The clinical efficacy of the chemoimmunotherapy combination in patients with refractory mTNBC, especially brain metastasis, is unknown. Co-amplification of PD-L1, PD-L2, and Janus kinase 2 (PD-L1/PD-L2/JAK2) genes (PDJ amplification) is associated with high PD-L1 protein expression and a 65-87% response rate to PD-1/PD-L1 inhibitors in patients with lymphomas. But the utility of PDJ amplification as a biomarker predictive of response to PD-1/PD-L1 inhibitors is unknown for mTNBC patients. Here, we report a 46-year-old woman who had rapid tumor progression in the brain and lung within 3 months after chemotherapy, neurosurgery, and gamma knife stereotactic radiosurgery for brain metastasis. Next-generation sequencing of her brain metastasis specimen revealed 9 copies of PDJ amplification and a tumor mutational burden of 5 mutations per megabase. Although high PDJ mRNA expression levels were detected, PD-L1 protein expression was negative on tumor cells and 10% on tumor-associated immune cells. After the debulking brain tumor resection, she received pembrolizumab monotherapy, whole brain radiation, and then atezolizumab and nab-paclitaxel with good intracranial and extracranial responses for >16 months. To the best of our knowledge, this is the first report that PDJ amplification is associated with durable clinical response to the PD-1/PD-L1 inhibitor-containing, multidisciplinary management in a patient with refractory, PD-L1 protein-negative, PDJ-amplified mTNBC. Further study is warranted to understand the underlying mechanism and validate PDJ amplification as a biomarker for clinical response to PD-1/PD-L1 inhibitor-containing therapy in patients with mTNBC
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model
<p>Abstract</p> <p>Background/Aims</p> <p>Matrix Metalloproteinases 2 is a key molecule in cellular invasion and metastasis. Mitochondrial ROS has been established as a mediator of MMP activity. Coenzyme Q<sub>10 </sub>contributes to intracellular ROS regulation. Coenzyme Q<sub>10 </sub>beneficial effects on cancer are still in controversy but there are indications of Coenzyme Q<sub>10 </sub>complementing effect on tamoxifen receiving breast cancer patients.</p> <p>Methods</p> <p>In this study we aimed to investigate the correlation of the effects of co-incubation of coenzyme Q10 and N-acetyl-L-cysteine (NAC) on intracellular H2O2 content and Matrix Metalloproteinase 2 (MMP-2) activity in MCF-7 cell line.</p> <p>Results and Discussion</p> <p>Our experiment was designed to assess the effect in a time and dose related manner. Gelatin zymography and Flowcytometric measurement of H2O2 by 2'7',-dichlorofluorescin-diacetate probe were employed. The results showed that both coenzyme Q10 and N-acetyl-L-cysteine reduce MMP-2 activity along with the pro-oxidant capacity of the MCF-7 cell in a dose proportionate manner.</p> <p>Conclusions</p> <p>Collectively, the present study highlights the significance of Coenzyme Q<sub>10 </sub>effect on the cell invasion/metastasis effecter molecules.</p
The Identification of Zebrafish Mutants Showing Alterations in Senescence-Associated Biomarkers
There is an interesting overlap of function in a wide range of organisms between genes that modulate the stress responses and those that regulate aging phenotypes and, in some cases, lifespan. We have therefore screened mutagenized zebrafish embryos for the altered expression of a stress biomarker, senescence-associated β-galactosidase (SA-β-gal) in our current study. We validated the use of embryonic SA-β-gal production as a screening tool by analyzing a collection of retrovirus-insertional mutants. From a pool of 306 such mutants, we identified 11 candidates that showed higher embryonic SA-β-gal activity, two of which were selected for further study. One of these mutants is null for a homologue of Drosophila spinster, a gene known to regulate lifespan in flies, whereas the other harbors a mutation in a homologue of the human telomeric repeat binding factor 2 (terf2) gene, which plays roles in telomere protection and telomere-length regulation. Although the homozygous spinster and terf2 mutants are embryonic lethal, heterozygous adult fish are viable and show an accelerated appearance of aging symptoms including lipofuscin accumulation, which is another biomarker, and shorter lifespan. We next used the same SA-β-gal assay to screen chemically mutagenized zebrafish, each of which was heterozygous for lesions in multiple genes, under the sensitizing conditions of oxidative stress. We obtained eight additional mutants from this screen that, when bred to homozygosity, showed enhanced SA-β-gal activity even in the absence of stress, and further displayed embryonic neural and muscular degenerative phenotypes. Adult fish that are heterozygous for these mutations also showed the premature expression of aging biomarkers and the accelerated onset of aging phenotypes. Our current strategy of mutant screening for a senescence-associated biomarker in zebrafish embryos may thus prove to be a useful new tool for the genetic dissection of vertebrate stress response and senescence mechanisms
Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling.
Neutrophils provide first line of host defense against bacterial infections utilizing glycolysis for their effector functions. How glycolysis and its major byproduct lactate are triggered in bone marrow (BM) neutrophils and their contribution to neutrophil mobilization in acute inflammation is not clear. Here we report that bacterial lipopolysaccharides (LPS) or Salmonella Typhimurium triggers lactate release by increasing glycolysis, NADPH-oxidase-mediated reactive oxygen species and HIF-1α levels in BM neutrophils. Increased release of BM lactate preferentially promotes neutrophil mobilization by reducing endothelial VE-Cadherin expression, increasing BM vascular permeability via endothelial lactate-receptor GPR81 signaling. GPR81-/- mice mobilize reduced levels of neutrophils in response to LPS, unless rescued by VE-Cadherin disrupting antibodies. Lactate administration also induces release of the BM neutrophil mobilizers G-CSF, CXCL1 and CXCL2, indicating that this metabolite drives neutrophil mobilization via multiple pathways. Our study reveals a metabolic crosstalk between lactate-producing neutrophils and BM endothelium, which controls neutrophil mobilization under bacterial infection
The self-organizing fractal theory as a universal discovery method: the phenomenon of life
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy
Updated measurements of exclusive J/ψ and ψ(2S) production cross-sections in pp collisions at √s = 7 TeV
The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψ and ψ(2S) mesons in proton–proton collisions at √s = 7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb−1. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects
First Measurement of the Charge Asymmetry in Beauty-Quark Pair Production
The difference in the angular distributions between beauty quarks and antiquarks, referred to as the charge asymmetry, is measured for the first time in b (b) over bar pair production at a hadron collider. The data used correspond to an integrated luminosity of 1.0 fb(-1) collected at 7 TeV center-of-mass energy in proton-proton collisions with the LHCb detector. The measurement is performed in three regions of the invariant mass of the b (b) over bar system. The results obtained are A(C)(b (b) over bar) (40 10(5) GeV/c(2)) = 1.6 +/- 1.7 +/- 0.6%,where A(C)(b (b) over bar) is defined as the asymmetry in the difference in rapidity between jets formed from the beauty quark and antiquark, where in each case the first uncertainty is statistical and the second systematic. The beauty jets are required to satisfy 2 20 GeV, and have an opening angle in the transverse plane Delta phi > 2.6 rad. These measurements are consistent with the predictions of the standard model
Observation of B(s)0→J/ψpp¯ decays and precision measurements of the B(s)0 masses
The first observation of the decays
B
0
(
s
)
→
J
/
ψ
p
¯
p
is reported, using proton-proton collision data corresponding to an integrated luminosity of
5.2
fb
−
1
, collected with the LHCb detector. These decays are suppressed due to limited available phase space, as well as due to Okubo-Zweig-Iizuka or Cabibbo suppression. The measured branching fractions are
B
(
B
0
→
J
/
ψ
p
¯
p
)
=
[
4.51
±
0.40
(
stat
)
±
0.44
(
syst
)
]
×
10
−
7
,
B
(
B
0
s
→
J
/
ψ
p
¯
p
)
=
[
3.58
±
0.19
(
stat
)
±
0.39
(
syst
)
]
×
10
−
6
. For the
B
0
s
meson, the result is much higher than the expected value of
O
(
10
−
9
)
. The small available phase space in these decays also allows for the most precise single measurement of both the
B
0
mass as
5279.74
±
0.30
(
stat
)
±
0.10
(
syst
)
MeV
and the
B
0
s
mass as
5366.85
±
0.19
(
stat
)
±
0.13
(
syst
)
MeV
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
- …